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If we continue in this fashion, we will obtain the

following sequence: 

1, 3, 16, 125,1296,16807,262144...
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Theorem (Cayley) There are        labeled trees on n 
vertices. 
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1. Induction
kAnA =⊂ ||},,...2,1{

knT , - the number of forests of k trees, for which the vertices from A appear 
in different components.

Cayley’s theorem

F(A, n) - the set of forests on n vertices in which vertices from A 
appear in different connected components(trees).
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in different components.

Cayley’s theorem - induction

F(A, n) - the set of forests on n vertices in which vertices from A 
appear in different connected components(trees).
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2. Establishing a 1-1 correspondence between trees and 
functions acting from 1..n into 1..n (Joyal)
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Other applications: the number of trees with a given 
degree sequence
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Polya’s approach
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T(x) is the generating function for the number of rooted trees with n vertices

Let     be the number of connected graphs on n vertices enjoying a certain 
property P.
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Lagrange inversion formula
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The number of spanning trees of a directed graph

Def. A spanning tree of a graph G is its subgraph T that includes all the vertices 
of G and is a tree

Def. A directed tree rooted at vertex n is a tree, all arcs of which are directed 
towards the root
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Def. A function f is called a tree function of a directed tree T iff f(i)=j when j is 
the first vertex on the way from i to the root.

Let c(H) denote the number of spanning trees of the graph H
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Knuth’s theorem 
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Knuth’s theorem 
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Matrix-Tree Theorem

Def. Let G be a directed graph without loops. Let               denote the 
vertices of G, and                        denote the edges of G.

},...,{ 1 nvv
},...,{ 1 mee

The incidence matrix of G is the n x m matrix A, such that

0
,1

,1

,

,

,

=
−=
=

ji

ji

ji

a
a
a if      is the head of

if      is the tail of 

otherwise

1 2

34

1

2

3

4 5

11100
00110
10011

01001

+++
−+

−−−
−+

iv

iv
je

je



Matrix-Tree Theorem
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Lemma. The incidence matrix of a connected graph on n vertices has the rank of 
n-1

The reduced incidence matrix A of a connected graph G is the matrix obtained 
from the incidence matrix by deleting a certain row.
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Matrix-Tree Theorem

Theorem (Binet-Cauchy)

∑= 2)(detdet BAA T

0A be the reduced incidence matrix of the graph G.Let

Theorem (Matrix-Tree Theorem)

If A is a reduced incidence matrix of the graph G, then the number of spanning trees 
equals )det( TAA ⋅
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Matrix-Tree Theorem

Another derivation of Cayley’s formula:
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Another derivation of Cayley’s formula:
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Matrix-Tree Theorem
Theorem (Matrix-Tree Theorem for directed graphs)

Let      be variables  representing the arcs of the graph. Let  
denote the n by n matrix in which         equals  the sum of arcs directed 
from node i to node j if           , and        equals the sum of all arcs 
directed from node i to all other nodes.
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