<u>Definition</u>: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

<u>Definition</u>: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

<u>Definition</u>: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

<u>Definition</u>: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

<u>Definition</u>: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

<u>Definition</u>: A labeled tree is a tree the vertices of which are assigned unique numbers from 1 to n.

Let T_n denote the number of labeled trees on n vertices. We now know the following values for small n:

 $T_2 = 1$ as there is only one tree on 2 vertices

Let T_n denote the number of labeled trees on n vertices. We now know the following values for small n:

 $T_2 = 1$ as there is only one tree on 2 vertices

 $T_3 = 3$ as we have seen before:

Let T_n denote the number of labeled trees on n vertices. We now know the following values for small n:

 $T_2 = 1$ as there is only one tree on 2 vertices

Let T_n denote the number of labeled trees on n vertices. We now know the following values for small n:

 $T_2 = 1$ as there is also one tree on 2 vertices

If we continue in this fashion, we will obtain the following sequence: 1, 3, 16, 125,1296,16807,262144...

If we continue in this fashion, we will obtain the following sequence:

1, 3, 16, 125, 1296, 16807, 262144...

$$T_n = n^{n-2}$$

Cayley's theorem

<u>Theorem (Cayley)</u> There are n^{n-2} labeled trees on n vertices.

<u>1. Induction</u>

 $A \subset \{1, 2, \dots n\}, |A| = k$

F(A, n) - the set of forests on n vertices in which vertices from A appear in different connected components(trees).

 $T_{n,k}$ - the number of forests of k trees, for which the vertices from A appear in different components.

Cayley's theorem - induction

 $A = \{n - k + 1, n - k + 2, \dots n\}, |A| = k$

F(A, n) - the set of forests on n vertices in which vertices from A appear in different connected components(trees).

 $T_{n,k}$ - the number of forests of k trees, for which the vertices from A appear in different components.

i vertices

$$F(A,n) \leftrightarrow \{F(A',n-1), A' = (A \setminus \{n\}) \cup \{i \ chosen \ vertices\}\}$$

$$T_{n,k} = \sum_{i=0}^{n-k} \binom{(n-1)-(k-1)}{i} T_{n-1,k+i-1}$$

$$T_{n,k} = kn^{n-k-1}$$

$$f|_{M} = \begin{pmatrix} 1 \ 4 & 5 & 7 & 89 \\ 7 \ 9 & 1 & 5 & 84 \end{pmatrix}$$

 $M = \{1, 4, 5, 7, 8, 9\}$ $f \mid_M$ is a bijection

$$f|_{M} = \begin{pmatrix} 1 \ 4 \ 5 \ 7 \ 89 \\ 79 \ 1 \ 5 \ 84 \end{pmatrix}$$

$$7 \quad 9 \quad 1 \quad 5 \quad 84$$

$$10$$

 $(7,9,1,5,8,4) \rightarrow (1,5,7,8,4,9)$ $f = \begin{pmatrix} 1 & 4 & 5 & 7 & 8 & 9 \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & &$

$$f = \left(\begin{array}{cccccc} 7 & 9 & 1 & 5 & 8 & 4 \end{array} \right)$$

Labeled tree -> $(a_1, a_2, ..., a_{n-2})$

Labeled tree -> $(a_1, a_2, ..., a_{n-2})$

Pruefer code :1

Labeled tree -> $(a_1, a_2, ..., a_{n-2})$

Pruefer code :1 4

Pruefer code :1 4 4

Pruefer code :1 4 4 1

Pruefer code :1 4 4 1 6

2. Pruefer code

Labeled tree -> $(a_1, a_2, ..., a_{n-2})$

Pruefer code :1 4 4 1 6 6

2. Pruefer code

Labeled tree -> $(a_1, a_2, ..., a_{n-2})$

Pruefer code :1 4 4 1 6 6 8

Labeled tree -> $(a_1, a_2, ..., a_{n-2})$

Pruefer code :1 4 4 1 6 6 8 6

Reversing the correspondence

(1 4 4 1 6 6 8 6)

• - inner vertex

(1 4 4 1 6 6 8 6)

- end vertex
- - inner vertex

(1 4 4 1 6 6 8 6)

- end vertex
- - inner vertex

(1 4 4 1 6 6 8 6)

- end vertex
- - inner vertex

- end vertex
- - inner vertex

- end vertex
- - inner vertex

- end vertex
- - inner vertex

- - deleted vertex
 - end vertex
- - inner vertex

Other applications: the number of trees with a given degree sequence

$$(x_1 + ... + x_m)^n = \sum_{\substack{(d_1, ..., d_m) \\ \sum_i d_i = n}} \frac{n!}{d_1! \cdots d_m!} x_1^{d_1} \cdots x_m^{d_m}$$

Let $(d_1, ..., d_n)$ be the degree sequence

$$\frac{(n-2)!}{(d_1-1)!\cdots(d_m-1)!}$$

Other applications: the number of trees with a given degree sequence

$$(x_{1} + \dots + x_{m})^{n} = \sum_{\substack{(d_{1}, \dots, d_{m}) \\ \sum_{i} d_{i} = n}} \frac{n!}{d_{1}! \cdots d_{m}!} x_{1}^{d_{1}} \cdots x_{m}^{d_{m}}$$

Let $(d_1, ..., d_n)$ be the degree sequence

$$\frac{(n-2)!}{(d_1-1)!\cdots(d_n-1)!}$$

$$\binom{n-2}{k-1}(n-1)^{n-k-1}$$

-the number of trees in which vertex n has degree k

Polya's approach

$$T(x) = \sum_{n=1}^{\infty} n t_n \, \frac{x^n}{n!}$$

T(x) is the generating function for the number of rooted trees with n vertices

Let c_n be the number of connected graphs on n vertices enjoying a certain property P.

$$\frac{1}{2}\sum_{k=1}^{n-1}\binom{n}{k} \cdot c_k \cdot c_{n-k} = \frac{1}{2} \cdot n! \sum_{k=1}^{n-1} \frac{c_k}{k!} \cdot \frac{c_{n-k}}{(n-k)!}$$
$$C(x) = \sum_{n=1}^{\infty} c_n \frac{x^n}{n!}$$

Polya's approach

$$T(x) = \sum_{n=1}^{\infty} nt_n \frac{x^n}{n!}$$

T(x) is the generating function for the number of rooted trees with n vertices

Lagrange inversion formula

$$\varphi(s) = x \psi(\varphi(s))$$
$$\frac{d^n}{ds^n} \varphi(s)|_{s=0} = \frac{1}{n} \frac{d^n}{dt^n} \psi^n(t)|_{t=0}$$

$$nt_{n} = \frac{1}{n} \frac{d^{n}}{dt^{n}} e^{nt} |_{t=0} = n^{n-1}$$

The number of spanning trees of a directed graph

<u>Def.</u> A spanning tree of a graph G is its subgraph T that includes all the vertices of G and is a tree

<u>Def.</u> A directed tree rooted at vertex n is a tree, all arcs of which are directed towards the root

$$n = \sum_{j=1}^{h} s_j$$

Consider an example: $s_1 = 3, s_2 = 2, s_3 = 2$

$$n = \sum_{j=1}^{h} s_j$$

Consider an example: $s_1 = 3, s_2 = 2, s_3 = 2$

n =

$$n = \sum_{j=1}^{h} s_j$$

Consider an example:
$$s_1 = 3, s_2 = 2, s_3 = 2$$

 \bigcirc \bigcirc

n =

$$n = \sum_{j=1}^{h} s_j$$

Consider an example:
$$s_1 = 3, s_2 = 2, s_3 = 2$$

• \bigcirc

$$n = \sum_{j=1}^{h} s_j$$

Consider an example:
$$s_1 = 3, s_2 = 2, s_3 = 2$$

Def. A function f is called a tree function of a directed tree T iff f(i)=j when j is the first vertex on the way from i to the root.

Let c(H) denote the number of spanning trees of the graph H

Theorem (Knuth)
$$c(H) = \sum_{f=1}^{h-1} |\Gamma(S_i)|^{|S_i|-1} |f(S_i)|$$

<u>Theorem</u> The number of spanning trees of a graph H arisen from a directed cycle equals

$$s_2^{s_1-1} \cdot s_3^{s_2} \cdot s_4^{s_3} \cdot \ldots \cdot s_1^{s_h-1}$$

<u>Theorem</u> The number of spanning trees of a graph H arisen from a directed cycle equals

 $s_2^{s_1-1} \cdot s_3^{s_2} \cdot s_4^{s_3} \cdot \ldots \cdot s_1^{s_h-1}$

 $s_2^{s_1-1} \cdot s_1^{s_2-1}$ is the number of r by s bipartite graphs

$$\sum_{k=0}^{n} \binom{n}{k} k^{n-k-1} (n-k-1)^{k-1} = 2n^{n-2}$$

Def. Let G be a directed graph without loops. Let $\{v_1, ..., v_n\}$ denote the vertices of G, and $\{e_1, ..., e_m\}$ denote the edges of G.

The incidence matrix of G is the n x m matrix A, such that

$$a_{i,j} = 1$$
, if v_i is the head of e_j
 $a_{i,j} = -1$, if v_i is the tail of e_j
 $a_{i,j} = 0$ otherwise

Lemma. The incidence matrix of a connected graph on n vertices has the rank of n-1

Lemma. The incidence matrix of a connected graph on n vertices has the rank of n-1

Lemma. The incidence matrix of a connected graph on n vertices has the rank of n-1

Lemma. The incidence matrix of a connected graph on n vertices has the rank of n-1

Let A_0 be the reduced incidence matrix of the graph G.

Theorem (Binet-Cauchy)

If R and S are matrices of size p by q and q by p, where $p \le q$, then $det(RS) = \sum det(B) \cdot det(C)$

Theorem (Matrix-Tree Theorem)

If A is a reduced incidence matrix of the graph G, then the number of spanning trees equals $det(A \cdot A^T)$

$$\det A \ A^T = \sum (\det B)^2$$

 $e_1,...e_b$ – variables identified with edges of G $M(e) = [m_{ij}]$

 $m_{ij} = -e_k, if e_k joins i and j and i \neq j$

 $m_{ij} = sum if edges$ incident to i otherwise

 $= e_1e_2e_3 + e_1e_2e_4 + e_1e_2e_5 + e_1e_3e_4 + e_1e_3e_5 + e_2e_3e_4 + e_2e_4e_5 + e_3e_4e_5$

 $e_1,...e_b$ – variables identified with edges of G $M(e) = [m_{ij}]$

 $m_{ij} = -e_k, if e_k joins i and j and i \neq j$

 $m_{ij} = sum if edges$ incident to i otherwise

 $= e_1e_2e_3 + e_1e_2e_4 + e_1e_2e_5 + e_1e_3e_4 + e_1e_3e_5 + e_2e_3e_4 + e_2e_4e_5 + e_3e_4e_5$

Another derivation of Cayley's formula:

Another derivation of Cayley's formula:

Another derivation of Cayley's formula:

$$\begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ 0 & n & \dots & 0 & 0 \\ 0 & 0 & \ddots & 0 & 0 \\ 0 & 0 & 0 & n & 0 \\ 0 & 0 & 0 & 0 & n \end{vmatrix} = n^{n-2}$$

Theorem (Matrix-Tree Theorem for directed graphs)

Let be variables representing the arcs of the graph. Let $C = [c_{ij}]$ denote the n by n matrix in which $-c_{ij}$ equals the sum of arcs directed from node i to node j if $i \neq j$, and c_{ii} equals the sum of all arcs directed from node i to all other nodes.

Then

$$C_n = \Sigma \Pi(T),$$

where the summation is over all spanning subtrees of G rooted at node n .

$$\begin{array}{c} 1 & 2 \\ 1 & 1 & 1 \\ 4 & 5 & 2 \\ 3 & 4 & 3 \end{array}$$

$$C_n = \left(\begin{array}{c} e_1 & -e_1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & -e_2 & e_2 & 0 \\ -e_4 & -e_5 & -e_3 & e_3 + e_4 + e_5 \end{array} \right)$$

