Technische Universität München Institut für Informatik Prof. Dr. Angelika Steger Dr. Stefanie Gerke Alexander Offtermatt-Souza

Randomisierte Algorithmen

Abgabetermin. Montag, den 25.11.2002 vor der Vorlesung

Aufgabe 1 Schätzen von Wahrscheinlichkeiten (18 Punkte)

Angenommen man bekommt eine Münze, von der man weiß, daß $\mathbb{P}[\text{Kopf}] = p \geq a$ für ein festes a gilt. Wenn wir keine weitere Information über p haben, dann soll ein Wert \hat{p} geschätzt werden, für den gilt:

$$\mathbb{P}\left[|p - \hat{p}| \ge \epsilon p\right] \le \delta,$$

für beliebige aber feste a > 0, $\epsilon > 0$, $\delta < 1$.

Sei N die Anzahl Würfe die gemacht werden, um \hat{p} zu erhalten. Wie groß muß N mindestens sein, damit die oben angegebene Abschätzung gilt?

Aufgabe 2 Martingal I (11 Punkte)

Angenommen wir haben eine Kiste, in der sich s_0 schwarze und w_0 weiße Bälle befinden. Wir führen folgendes Spiel aus: Wir ziehen zufällig einen der Bälle und legen ihn zusammen mit c zusätzlichen Bällen seiner eigenen Farbe zurück. Sei $X_i = s_i/(s_i + w_i)$ der Bruchteil der schwarzen Bälle in der Kiste nachdem wir i Bälle gezogen und zurückgelegt haben. Zeigen Sie, daß die Sequenz X_0, X_1, \ldots ein Martingal ist.

Aufgabe 3 Martingal II (11 Punkte)

Angenommen wir werfen m Bälle in n Kisten. Sei Z die Zufallsvariable, die die Anzahl der Kisten zählt, in der kein Ball liegt, nachdem alle Bälle geworfen wurden.

Wir definieren die Zufallsvariable Z_t als den Erwartungswert von Z nachdem $0 \le t \le m$ Bälle in die Kisten geworfen wurden. (Es ist klar, daß Z_t von der Anzahl und der Lage der bisher geworfenen Bälle abhängt.)

Zeigen Sie, daß die Sequenz Z_0, Z_1, \ldots, Z_m ein Martingal ist und daß $Z_0 = \mathbb{E}[Z]$ und $Z_m = Z$ gilt.

Übungsleitung

Alexander Offtermatt-Souza

Raum: MI 03.09.037 - Telefon: 289-17742 - eMail: offterma@in.tum.de