14 Wireless Overlay Networks Il

In this section we focus on constructions for sector-based spanners and planar spanners.

14.1 Sector-based spanners

The basic idea underlying the Yao graphs is to cut the space around each node into sectors of equa
angled and to connect each node to the nearest neighbor in each of its sectors (see Figure 1). As we
will see, this will give a relative neighborhood graphvifs sufficiently small. For any pair of nodes

u,v, letC, , denote the sector (or cone)@ttontainingu.

Figure 1. An example of a Yao graph.

Definition 14.1 Consider any finitd” ¢ IR* and letk € IN. Suppose that the space around every
nodev € V is cut intok sectors with anglé = 27/k. Then theYao graphY Gy4(V') of V' consists of
the following set of edges:

E ={(u,v) | u,v € V and there is nav € V withw € C,, and||uw|| < ||uv]||} .
We start with a basic property of Yao graphs.
Theorem 14.21If § = 27 /k with & > 6, thenY Gy(V') is a RNG.
Proof. Follows immediately from Lemma 14.4. O

The theorem immediately implies that Yao graphs with- 6 are weak spanners. But they are
more than that, as shown in the next theorem.

Theorem 14.31If § = 2x/k with k£ > 6, thenY Gy(V) is a geometric spanner with stretch factor at

most
1

1—2sin(0/2)



Proof. We first need a lemma.

Lemma 14.4 Letp € IR? be a point and” be a sector originating ap. Furthermore, let; andr be
two points inC' with [|pq|| < [|pr|[. Thenl|gr|| < |[pr|| = (1 — 2sin(6/2))]|pqg]|.

Proof.

Figure 2: The sector gf that containg:.

Consider Figure 2. In this figure, represents the point on the line frgmto » with the same
distance tg asq. Applying the triangle inequality tg, ¢/, andr, we get

llarll < llgq'll + llg"r|l - @
llqd’|| is certainly maximized ify andq’ are on opposite sides of the sector. Hence,
llaq'[| < 2sin(6/2) - ||pal| - )
Moreover,
g'r[| = [lprll = [lpg'I| = [lpr[l = llpall - 3)
Plugging (2) and (3) into (1) yields
lar|| < 2sin(0/2) - |[pql[ + |[pr] — llpql]
= Alpr[l = (1 = 2sin(6/2))]lpql| -
0

Given a source-destination pdit, t), consider the following strategy to get frosto ¢: Always
take the edge whose other endpoint lies in the same sector as

Let the path obtained by this rule pe= (s = wvg,v1,...,v, = t). The path indeed ends gt
because fok > 6 we are guaranteed to have

ot > [lvisat]]



Figure 3: Figure illustrating that far < 7/3, v;,1 is closer tot thanv;.

for all 7 (see Figure 3).
Using Lemma 14.4, it holds that

-1
> viat]] < Z [lvit|] = (1 = 2sin(6/2))[[viviga]]) -
i=0

1=0

Rearranging the terms yields
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lstll

which proves the theorem. O
Combining this with Theorem 13.9 yields the following result.

Corollary 14.5 If = 27 /k with k > 6, thenY' G(V) is a(c, 0)-power spanner for every > 1 with

A much better result was shown by Li et al. [6] foe> 2. We strengthen their result to any> 1.

Theorem 14.6 If 6 = 27 /k with k > 6, thenY Gy(V') is a(c, §)-power spanner for everyy > 1 with

1
€= 1T (2sn(0/2))

Proof. Letc = W We construct a path from u to v. If (u,v) € YGy(V') then we sep

to (u,v). Otherwise, there must exist another nad@ the same sector aswith (u, w) € YGy(V).
Thenp is the concatenation ¢f:, w) and a path fromw to v. Sincek > 6, it follows from Lemma 14.4



that||wv|| < |luv||. Hence, each node appears at most once in thegpatfe prove by induction on
the number of its edges thahas a cost of at most|uv||°.

If (u,v) € YGo(V) then||p||° = |Juv]]® < c||luv|]’°. So assume that the claim is true for any path
with ¢ edges. Then consider a patlirom « to v with ¢ + 1 edges, which is the concatenation of an
edge(u,w) and a pathy’ from w to v with ¢ edges. Letr = 2sin(f/2) andz > 0 be chosen so that
|luv|| = (1 + o)|Juw]||. From the induction hypothesis it holds that||° < c||wv|]°. Hence,

Il < [|uw]]® + efjwol]’
Lemma 1.20

[Juw]]® + (o luwl] + (Juv]] = [Juw]]))’

_—

1
= (14 o+ [l

To prove the theorem, we have to show that

Ipl] < clluvll” = (1 + )’ [Juw]l’

1—of
(Recall that|uv|| = (1 + x)||uw]||.) To show this, consider the function

1

f(l'): 1_05(1+x>6_

Tl ta) —1.

It holds that 5
fa) == (2 = (o +2)")

f'(x) is obviously at least O for ak < 1,6 > 1, andz > 0. Hence,f(z) attains its minimum at
x = 0. Since

f(()): 0_5_ 5_1:07

l1—0

it follows that, indeed||p|| < c||uv||® for all § > 1. O

There is also a simple distributed protocol for the Yao graph. Again, suppose that every @adde
knows its neighborhood/ () in the UDG and the current positions of the noded/ifu). Every node
aims at maintaining a connection to the closest node in every sectoiZ (gtbe the current set of
connections of node. Then the protocol in Figure 4 can be used. This protocol has the following
performance:

Theorem 14.7 The Yao protocol self-stabilizes in one round. In the stable state, the outdegree of every
node is at most.

Proof. Follows directly from the protocol. O

The drawback of the Yao graph is that, although its out-degree is at imast in-degree may
be as high as — 1 (consider, for example, the disk in Figure 10 with one node in its center and all
other nodes on its border). Various sub-graphs of the Yao graph have been suggested to remove thi
drawback. We will present two of them here.



Protocol Yao:

For every node: € V repeatedly do:
1) for every nodev € E(u):
if there is a node € N (u) in w’s sector with||uv|| < ||uw|| then
removew from E(u)
2) for every secto€’ of u:
if C has at least one node M(u) but no node inE(u) then
add the nodev in C of smallest distance to to E(u)

Figure 4: A self-stabilizing protocol for Yao graphs.

Definition 14.8 Thesparsified Yao grapHpY G4(V) is a sub-graph ot" G (V') with edge set
E = {(u,v) € E(YGy(V)) | forall w € V with (w,v) € E(YG(V)) andw € C, . |Jvw|| > ||vul|} .

In words, for every sector of every nodethe sparsified Yao graph only keeps the shortest of all
edges intow. Hence, the sparsified Yao graph has an in-degree of at fnastl an outdegree of at
mostk, and therefore a degree of at most

Definition 14.9 Thesymmetric Yao graplsyY Gy (V') is a sub-graph ot G, (V') with edge set
E ={(u,v) € E(YGy(V)) | (v,u) € E(YGa(V))} .

In words, the symmetric Yao graph only keeps an edge) if not only v is the nearest neighbor
of u in C,, but alsou is the nearest neighbor ofin C,,. Hence, the symmetric Yao graph has a
degree of at most. Obviously,

SyY Go(V) C SpYGe(V) C Y Gy(V)

and Figure 5 shows that there are cases in which the edge sets of the different graphs are proper subse
of each other. Thus, it suffices to prove connectivity$gt” Gy(V') in order to prove connectivity for
both variants of the Yao graph.

Figure 5: The Yao graph, the sparsified Yao graph, and the symmetric Yao graph of a point set.



Theorem 14.10 ([3]) For all non-degenerate node sdtsandk > 6, SyY Gy(V) is connected.

Proof. We prove the theorem by induction over the distances between the pairs of nodes, starting with
the pair of lowest distance, sy, w). In this casew must be the nearest neighbor in a sectar ahd
u must be the nearest neighbor in a sectowoHence,(u, w) € E(SyY Gy(V')), and therefore. and
w are connected.

Now, suppose that we already know for thepairs with lowest distance that each of them is
connected. Then l€t, w) be the next pair to be considered. We distinguish between three cases:

1. There is a node < C,, that is closer ta: thenw: Sincek > 6, it holds in this case that
|luv|| < |Jluwl|| and||vw|| < ||luwl||. Hence, according to our induction hypothesigndv and
v andw must be connected. Thus, als@ndw must be connected.

2. There is a node € C,, that is closer tav thenu: Using the same arguments as for the first
case, it follows that also in this cagseandw must be connected.

3. None of the two cases above hold: Themust be the nearest neighborwoi C,, ,, andu must
be the nearest neighbor efin C, .. Hence,(u,w) € E(SyY Gy(V)), and therefore: andw
are connected.

Thus, all pairs of nodes i must be connected, and thereforgY Gy (V') must be connected. O

Unfortunately, the symmetric Yao graph is not a good power spanner far any, which implies
that it is not even a good weak spanner.

Theorem 14.11 ([1]) The symmetric Yao graph is not a ¢)-power spanner for any constantand
anyo > 1.

However, the sparsified Yao graph is a good weak spanner.

Theorem 14.12 ([1]) If £ > 6, then the sparsified Yao graph is a weagpanner with: = m
Proof. LetG = (V, E) be the sparsified Yao graph agd- = (V, Ey) be the underlying Yao graph.
Consider any two nodes, w € V. Our goal is to show that there is a path franto w in G that is
inside a disk with centex of radius||uw||/(1 — 2sin(6/2)). For any sector, define the Yao-neighbor
v of u as the (unique) nodein that sector with(u, v) € Ey. Then we know:

¢ if a nodewu has no directed edge in a sector, then either the sector is empty or there is a Yao-
neighbor incident to an edgé’, v) € E whereu' is in another sector aof with ||[u/v|| < ||uv]|.
Furthermore||uv/|| < ||uv|| becausd < 7/3.

e Every nodeu has at least one neighbobecause the sparsified Yao graph is connected.

We recursively construct the pattu, w) as follows: if(u, w) € E thenp(u, w) = (u,w). Suppose
thatw is notu’s Yao-neighbor irC,, ,, butu has an edge to its Yao-neighbey,, in C,, ,,. Thenp(u, w)
is defined as

p(u, w) =u op(wl, w)



whereu o p(wy, w) is the concatenation of with the node sequence for the pathw,, w) from w, to
w that still needs to be determined.

Suppose that does not have a connection to its Yao-neighbpm C,, ,,. Then we know that there
exists an edgév,, w,) € E wherewv is outside of the sectar,, ,, and||uv, || < ||uw,]||. Furthermore,
we have||luw: || < |Jluwl||. Then we replacev by w; and repeat the arguments above. This iteration
ends whenu has a connection to a Yao-neighhoy, or v,,. Because every node has at least one
neighbor inE, this process terminates. If it terminates with, then we define(u, w) as

p(u, w) = w0 p(Wnm, Vm—1) © P(Win—1,Vm—2) © ... 0 p(ws, v1) © p(wr, w)

wherep(w;, w) may just be equal to if w; = w. Otherwise, we defing(u, w) as

p(u, w) = 10 Uy © P(Wiy, Vy—1) © ... 0 p(wa, v1) © p(wy, w)

Now, notice that all nodes;, w; are inside the disk of radiyg:w|| aroundu. We continue to refine
the pathe(w;, v;_1) as we did forp(u, w) above. Consider any fixed pdiw;, v;_1). Letry = ||uwl|,
||uw;|| = ||uvi—1|| — do, ando = 2sin(6/2). Then it follows from Lemma 14.4 that

fwivia|] < ||Wz‘—1||—(1—0)(||Wz‘—1||—d0)
< TO—(l—U)(T’Q—dQ)

andw; has a distance of at most — d, from u. Hence, the nodes identified fpfw;, v;_;) are inside
the disk of radiug|w;v;_;|| aroundw; and therefore inside the disk of radius

ro+ (ro — (1 — o) (rg — do)) — do

aroundu. Continuing the refinements recursively, it follows that all nodes initheecursion are
inside the disk of radius™’_, r; — >"_, d; aroundu wherer; is recursively defined as

ri=ri-1— (1 —=0)(ri-i —di—1) .

It holds that

or=>di < r020i+(1—0) (Zdl> (Zai)—Zdi

i>0 i>0 i>0 i>0 i>0 i>0

, 1
= rgy o' =——"||luwl]
; 1—0o
Thus, there is a path fromto w that is completely inside the disk of radiug(1 — o)||uw|| aroundu,
which proves the theorem. O

Though the sparsified Yao graph is not a relative neighborhood graph like the original Yao graph,
it is easy to check that when restricting to the UDGlQfthe proof of Theorem 14.12 is still correct
for all pairsu, w with ||uw|| < 1. Hence, it follows from the proof of Theorem 13.4 that the sparsified
Yao graph is also a weakspanner of the UDG o¥. Thus, Theorem 13.10 implies that it is also a
power spanner of the UDG af for everyd > 2 and therefore useful for wireless ad hoc networks.

Next, we present a distributed protocol for the sparsified Yao graph. Again, we assume that each
nodeu € V knows its neighborhood ' (u) and the current positions of the nodesNitu). Nodew
also keeps track of the following sets:



e F(u): set of edges that currently has to nodes iV (u).
e R(u): set of nodes inV(u) requesting a connection to

Then the nodes work as given in Figure 6.

Protocol SparseYao:

For every node, € V repeatedly do:
1) for every nodev € N (u):
if w is the closest node i@, ., and it is possible (from’s view) that(u, w) € SpY Gg(V') then
u sends a connection requestidcausingw to addu to R(w))
else removev from E(u) if it is there
2) for every nodev € R(u):
if w is closest ta: in w’s sector among all nodes R(u) then
u sendsw permission to connect (causingto addu to E(w))
elseu notifiesw that it gave permission to another nade(s.t. w removesu from E(w))

Figure 6: A self-stabilizing protocol for the sparsified Yao graph.

Theorem 14.13 The SparseYao protocol self-stabilizes in one round.

Proof. Suppose that all neighbor sets are up-to-date. Then everywmnkdews the correct nodes

in step 1) that it has edges to in the Yao graph. Thus, at the end of step 1), every kodes all

the nodes that havew as the closest node in one of their sectors. Hence, in step 2), everynode
can select incoming edges according to the specifications of the sparsified Yao graph and will inform
their starting points, which makes sure that at the end of step 2), all nodes added td”(u) with

(u, w) being an edge ibpY G4(V'). On the other handZ(«) will contain only those nodes with

(u,w) € SpY Gy(V') because in step 1, all nodesfor which no request is sent are removed from
E(u), and in step 2, all nodes that rejected the request are removed frbm). O

14.2 Planar spanners

The most well known class of planar spanners are the Delaunay graphs. The Delaunay graph of a se
of points inIR? is equivalent to their Delaunay triangulation and the dual of their Voronoi diagram.
Since the Delaunay triangulation of any point selRhis planar, the Delaunay graph is planar. In the
following, let A(uvw) be the triangle formed by the nodesv, andw and O(uvw) be the unique

circle throughu, v, andw.

Definition 14.14 For any V' C IR?, theDelaunay graptDel(V') of V consists of all edgeg:, v) that
have a nodev € V' for which(O(uvw) does not contain any other node6f

For an example of a Delaunay graph see Figure 7. It is known [2, 4] that the Delauney graph is a
geometricc spanner withe = ﬁ ~ 2.42, but the Delaunay graph is difficult to maintain locally.
Therefore, several variants of it have been proposed. The most well-known variant is the Gabriel

graph.



Figure 7: An example of a Delaunay graph.

Definition 14.15 For any V' C IR?, the Gabriel graphGG(V) of V consists of all edgegu, w) with
the property that there is no nodec V' with

[lwv]|* + [fow]* < [Juw]|*

In words, the Gabriel graph &f consists of all edgegu, w} with the property that the open sphere
throughu andw with diameteri|uw|| does not contain any other nodelin An example of a Gabriel
graph is given in Figure 8. The Gabriel graph has the following interesting properties:

Figure 8: A Gabriel graph.

Theorem 14.16 For any V' C IR?, the Gabriel graph of/ is a relative neighborhood graph and a
subgraph of the Delaunay graph bt



Proof. The Gabriel graph is a relative neighborhood graph because for all(pairg with (u, w) ¢
GG(V) there must be a nodec V with ||uv||*+|[vw]|[* < |Juw][?, which implies that|uv|| < |Juw]|
and|lvwl|| < ||uw]].

It is also a subgraph of the Delaunay graph because for every(edge in GG(V') it must hold
that there is no node in the open sphere of diametgnw|| thoughu andw. If |V| > 2, we can then
just extend the sphere into any direction until it hits a nodén this case, there is no other node in
O(uvw) which implies thatu, w) is also an edge i®el (V). 0

Unfortunately, Theorem 13.8 implies that the Gabriel graph is not a geometric spanner. With better
techniques one can even create a counterexample with stretch(#¢tan [6]. But Theorem 13.13
implies that the Gabriel graph is a weak 2-spanner, and even more importantly, it is an optimal power
spanner for every > 2.

Theorem 14.17 ([6]) For everyé > 2, the Gabriel graph is an optimal power spanner.

Proof. Consider any pair of nodes w € V and letp be their optimal energy path. Consider an
arbitrary edggz, y} in p. Suppose that there is a node S, ,. Then, by the Theorem of Pythagoras,
l|lzv]|° + |Jvy]]° < ||zy||° for everyd > 2. Hence, replacing the edde, v} in p by {z, v} and{v, y}
would reduce its energy, which would contradict our assumptionthatan optimal energy path.
Hence, there cannot be a nodeSp,, and thereforgz, y} must be an edge in the Gabriel graph.
Thus,p must be a path in the Gabriel graph, which proves the theorem. O

There is a simple protocol for the Gabriel graph. Again, suppose that everyunad& knows
its neighborhoodV (u) in the UDG and the current positions of the nodes\ifu). Let E(u) be the
current set of connections of node Then the protocol in Figure 9 can be used. It has the following
performance:

Protocol Gabriel:

For every node: € V repeatedly do:
1) for every nodev € E(u):
if there is a node € N (u) with ||uv||? + |Jvw||? < |Juw]|| then
removew from E(u)
2) for every nodev € N(u) \ E(u):
if there is no node € N (u) with ||uv||? + |[vw||? < ||uw|| then
addw to E(u)

Figure 9: A self-stabilizing protocol for Gabriel graphs.

Theorem 14.18 The Gabriel protocol self-stabilizes in one round.

Proof. Follows directly from the protocol. O

Unfortunately, the outdegree of a Gabriel graph can be as high-as (see Figure 10). Also,
since the Gabriel graph is not a geometric spanner, one may ask whether there are locally constructible
planar graphs that are geometric spanners. To investigate the latter issue, we define the following
classes of graphs.

10
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Figure 10: Gabriel graph for the unit disk with one node in its center and all other nodes on its border.

Definition 14.19 A triangle A (uvw) satisfies the:-localized Delaunay properiythe interior of the
disk O(uvw) does not contain any node &f that is ak-neighbor ofu, v, or w in UDG(V') and
(u,v), (v,w), (w,u) € UDG(V'). Such atriangle is called a-localized Delaunay triangle

Definition 14.20 The k-localized Delaunay grapbver V, denoted byLDel®(V), has exactly all
Gabriel edges and the edges of Allocalized Delaunay triangles.

Let the constrained Delaunay grapbf a point setV be defined ag/Del(V) = Del(V) N
UDG(V). The following facts are known abottlocalized Delaunay graphs (e.g., [5]).

Theorem 14.21 Localized Delaunay graphs have the following properties:
1. UDel(V) C LDel®) (V) forall & > 1.
2. LDel**D(V) C LDel®™ (V) forall k > 1.
3. LDel® (V) is a planar graph.
4. LDel™ (V) is not always planar.

Proof. The first two items follow immediately from the definition of localized Delaunay graphs.
Suppose that it is possible to choose soveo thatLDel® (V) is not a planar graph. Then
LDel® (V) must contain two edges that cross each other. Let these edgesdeand (w, w').
Since||vv’|] < 1 and||ww’|] < 1 and the edges cross each other, there must be nodegv, v’}
andv’ € {w,w'} so that||uu/|| < 1. But then{v,v',w,w'} C No(u) and{v,v',w,w'} C No(u')

11



which implies that choosingu, v') and (w, w’) would violate the definition of.Del® (V). Hence,
LDel® (V) is always planar.

It remains to show that there is a Sétso thatL Del" (V) is not planar. For this consider the
example in Figure 11. In this exampl€)(u, v, w) does not contain any node N (u), N(v), and
N(w), andO(z,y, z) does not contain any node i¥i(z), N(y), andN(z). Hence,(v, w) and(z, z)
are edges i, Del™ (1), but they intersect.

Xy
vi U ee W
:3\'\./-/:
4

Figure 11:LDel™ (V) is not planar.

O

SinceU Del(V) is a geometrie-spanner withe ~ 2.42 it follows that LDel? (V) is a geometric
c-spanner withe ~ 2.42, and it is also planar. Alsd,Del® (V) can be easily maintained locally. See
Figure 12 for a self-stabilizing protocol. In this protocol we assume that everymad& knows its
2-neighborhood

N*(u) = Upen(u N (v)

and the current positions of the nodes\A(u).

Protocol LDel2:

For every node: € V repeatedly do:
1) for every nodev € E(u):
if {u,w} is not a Gabriel edge and does not belong telacalized Delaunay triangle the
removew from E(u)
2) for every nodev € N(u) \ E(u):
if {u,w} is a Gabriel edge or belongs td:docalized Delaunay triangle then
addw to E(u)

>

Figure 12: A self-stabilizing protocol for the 2-localized Delaunay graph.

Theorem 14.22 The LDel2 protocol self-stabilizes in one round.

12



Proof. Follows directly from the protocol. a

However, as mentioned above, Gabriel graphs and therefore all graphs of the localized Delaunay

graph family have the problem that the degree may be very high (see Figure 10). This problem can
be solved by constraining a Delaunay graph in the same way Yao graphs are constrained to sparsifiec
Yao graphs: cut the space around each nodefnto 6 sectors of equal angle, and accept only the
connection of the closest node with an incoming edge in the original graph. Similar to the proof of
the sparsified Yao graph, this gives a sparsified Delaunay graph that is still a weak spanner. Other
constructions have been proposed that can even maintain a Eualidéaspanner but at the cost of
requiring an algorithm that may need a long time to stabilize at some solution [7].
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