
14 Wireless Overlay Networks II

In this section we focus on constructions for sector-based spanners and planar spanners.

14.1 Sector-based spanners

The basic idea underlying the Yao graphs is to cut the space around each node into sectors of equal
angleθ and to connect each node to the nearest neighbor in each of its sectors (see Figure 1). As we
will see, this will give a relative neighborhood graph ifθ is sufficiently small. For any pair of nodes
u, v, let Cu,v denote the sector (or cone) ofu containingv.

Figure 1: An example of a Yao graph.

Definition 14.1 Consider any finiteV ⊂ IR2 and letk ∈ IN. Suppose that the space around every
nodev ∈ V is cut intok sectors with angleθ = 2π/k. Then theYao graphY Gθ(V ) of V consists of
the following set of edges:

E = {(u, v) | u, v ∈ V and there is now ∈ V with w ∈ Cu,v and||uw|| < ||uv||} .

We start with a basic property of Yao graphs.

Theorem 14.2 If θ = 2π/k with k > 6, thenY Gθ(V ) is a RNG.

Proof. Follows immediately from Lemma 14.4. ut

The theorem immediately implies that Yao graphs withk > 6 are weak spanners. But they are
more than that, as shown in the next theorem.

Theorem 14.3 If θ = 2π/k with k > 6, thenY Gθ(V ) is a geometric spanner with stretch factor at
most

1

1− 2 sin(θ/2)
.
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Proof. We first need a lemma.

Lemma 14.4 Let p ∈ IR2 be a point andC be a sector originating atp. Furthermore, letq andr be
two points inC with ||pq|| ≤ ||pr||. Then||qr|| ≤ ||pr|| − (1− 2 sin(θ/2))||pq||.

Proof.

q’

q

r

p

Figure 2: The sector ofp that containsr.

Consider Figure 2. In this figure,q′ represents the point on the line fromp to r with the same
distance top asq. Applying the triangle inequality toq, q′, andr, we get

||qr|| ≤ ||qq′||+ ||q′r|| . (1)

||qq′|| is certainly maximized ifq andq′ are on opposite sides of the sector. Hence,

||qq′|| ≤ 2 sin(θ/2) · ||pq|| . (2)

Moreover,

||q′r|| = ||pr|| − ||pq′|| = ||pr|| − ||pq|| . (3)

Plugging (2) and (3) into (1) yields

||qr|| ≤ 2 sin(θ/2) · ||pq||+ ||pr|| − ||pq||
= ||pr|| − (1− 2 sin(θ/2))||pq|| .

ut

Given a source-destination pair(s, t), consider the following strategy to get froms to t: Always
take the edge whose other endpoint lies in the same sector ast.

Let the path obtained by this rule bep = (s = v0, v1, . . . , v` = t). The path indeed ends att,
because fork > 6 we are guaranteed to have

||vit|| > ||vi+1t||
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Figure 3: Figure illustrating that forθ < π/3, vi+1 is closer tot thanvi.

for all i (see Figure 3).
Using Lemma 14.4, it holds that

`−1∑

i=0

||vi+1t|| ≤
`−1∑

i=0

(||vit|| − (1− 2 sin(θ/2))||vivi+1||) .

Rearranging the terms yields

`−1∑

i=0

||vivi+1|| ≤ 1

1− 2 sin(θ/2)

`−1∑

i=0

(||vit|| − ||vi+1t||)

=
1

1− 2 sin(θ/2)
· ||st|| ,

which proves the theorem. ut

Combining this with Theorem 13.9 yields the following result.

Corollary 14.5 If θ = 2π/k with k > 6, thenY Gθ(V ) is a (c, δ)-power spanner for everyδ ≥ 1 with

c ≤
(

1

1− 2 sin(θ/2)

)δ

.

A much better result was shown by Li et al. [6] forδ ≥ 2. We strengthen their result to anyδ ≥ 1.

Theorem 14.6 If θ = 2π/k with k > 6, thenY Gθ(V ) is a (c, δ)-power spanner for everyδ ≥ 1 with

c ≤ 1

1− (2 sin(θ/2))δ
.

Proof. Let c = 1
1−(2 sin(θ/2))δ . We construct a pathp from u to v. If (u, v) ∈ Y Gθ(V ) then we setp

to (u, v). Otherwise, there must exist another nodew in the same sector asv with (u,w) ∈ Y Gθ(V ).
Thenp is the concatenation of(u,w) and a path fromw to v. Sincek > 6, it follows from Lemma 14.4
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that ||wv|| < ||uv||. Hence, each node appears at most once in the pathp. We prove by induction on
the number of its edges thatp has a cost of at mostc||uv||δ.

If (u, v) ∈ Y Gθ(V ) then||p||δ = ||uv||δ < c||uv||δ. So assume that the claim is true for any path
with ` edges. Then consider a pathp from u to v with ` + 1 edges, which is the concatenation of an
edge(u,w) and a pathp′ from w to v with ` edges. Letσ = 2 sin(θ/2) andx ≥ 0 be chosen so that
||uv|| = (1 + x)||uw||. From the induction hypothesis it holds that||p′||δ ≤ c||wv||δ. Hence,

||p|| ≤ ||uw||δ + c||wv||δ
Lemma 1.20≤ ||uw||δ +

1

1− σδ
(σ||uw||+ (||uv|| − ||uw||))δ

=
(
1 +

1

1− σδ
(σ + x)δ

)
||uw||δ

To prove the theorem, we have to show that

||p|| ≤ c||uv||δ =
1

1− σδ
(1 + x)δ||uw||δ

(Recall that||uv|| = (1 + x)||uw||.) To show this, consider the function

f(x) =
1

1− σδ
(1 + x)δ − 1

1− σδ
(σ + x)δ − 1 .

It holds that

f ′(x) =
δ

1− σδ

(
(1 + x)δ−1 − (σ + x)δ−1

)

f ′(x) is obviously at least 0 for allσ ≤ 1, δ ≥ 1, andx ≥ 0. Hence,f(x) attains its minimum at
x = 0. Since

f(0) =
1

1− σδ
− σδ

1− σδ
− 1 = 0 ,

it follows that, indeed,||p|| ≤ c||uv||δ for all δ ≥ 1. ut

There is also a simple distributed protocol for the Yao graph. Again, suppose that every nodeu ∈ V
knows its neighborhoodN(u) in the UDG and the current positions of the nodes inN(u). Every node
aims at maintaining a connection to the closest node in every sector. LetE(u) be the current set of
connections of nodeu. Then the protocol in Figure 4 can be used. This protocol has the following
performance:

Theorem 14.7 The Yao protocol self-stabilizes in one round. In the stable state, the outdegree of every
node is at mostk.

Proof. Follows directly from the protocol. ut

The drawback of the Yao graph is that, although its out-degree is at mostk, its in-degree may
be as high asn − 1 (consider, for example, the disk in Figure 10 with one node in its center and all
other nodes on its border). Various sub-graphs of the Yao graph have been suggested to remove this
drawback. We will present two of them here.
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Protocol Yao:

For every nodeu ∈ V repeatedly do:
1) for every nodew ∈ E(u):

if there is a nodev ∈ N(u) in w’s sector with||uv|| < ||uw|| then
removew from E(u)

2) for every sectorC of u:
if C has at least one node inN(u) but no node inE(u) then

add the nodew in C of smallest distance tou to E(u)

Figure 4: A self-stabilizing protocol for Yao graphs.

Definition 14.8 Thesparsified Yao graphSpY Gθ(V ) is a sub-graph ofY Gθ(V ) with edge set

E = {(u, v) ∈ E(Y Gθ(V )) | for all w ∈ V with (w, v) ∈ E(Y Gθ(V )) andw ∈ Cv,u: ||vw|| > ||vu||} .

In words, for every sector of every nodev, the sparsified Yao graph only keeps the shortest of all
edges intov. Hence, the sparsified Yao graph has an in-degree of at mostk and an outdegree of at
mostk, and therefore a degree of at most2k.

Definition 14.9 Thesymmetric Yao graphSyY Gθ(V ) is a sub-graph ofY Gθ(V ) with edge set

E = {(u, v) ∈ E(Y Gθ(V )) | (v, u) ∈ E(Y Gθ(V ))} .

In words, the symmetric Yao graph only keeps an edge(u, v) if not only v is the nearest neighbor
of u in Cu,v but alsou is the nearest neighbor ofv in Cv,u. Hence, the symmetric Yao graph has a
degree of at mostk. Obviously,

SyY Gθ(V ) ⊆ SpY Gθ(V ) ⊆ Y Gθ(V )

and Figure 5 shows that there are cases in which the edge sets of the different graphs are proper subsets
of each other. Thus, it suffices to prove connectivity forSyY Gθ(V ) in order to prove connectivity for
both variants of the Yao graph.

Figure 5: The Yao graph, the sparsified Yao graph, and the symmetric Yao graph of a point set.
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Theorem 14.10 ([3]) For all non-degenerate node setsV andk > 6, SyY Gθ(V ) is connected.

Proof. We prove the theorem by induction over the distances between the pairs of nodes, starting with
the pair of lowest distance, say(u,w). In this case,w must be the nearest neighbor in a sector ofu and
u must be the nearest neighbor in a sector ofw. Hence,(u, w) ∈ E(SyY Gθ(V )), and thereforeu and
w are connected.

Now, suppose that we already know for thek pairs with lowest distance that each of them is
connected. Then let(u,w) be the next pair to be considered. We distinguish between three cases:

1. There is a nodev ∈ Cu,w that is closer tou thenw: Sincek > 6, it holds in this case that
||uv|| < ||uw|| and||vw|| < ||uw||. Hence, according to our induction hypothesis,u andv and
v andw must be connected. Thus, alsou andw must be connected.

2. There is a nodev ∈ Cw,u that is closer tow thenu: Using the same arguments as for the first
case, it follows that also in this caseu andw must be connected.

3. None of the two cases above hold: Thenw must be the nearest neighbor ofu in Cu,w andu must
be the nearest neighbor ofw in Cw,u. Hence,(u,w) ∈ E(SyY Gθ(V )), and thereforeu andw
are connected.

Thus, all pairs of nodes inV must be connected, and thereforeSyY Gθ(V ) must be connected. ut

Unfortunately, the symmetric Yao graph is not a good power spanner for anyδ ≥ 1, which implies
that it is not even a good weak spanner.

Theorem 14.11 ([1]) The symmetric Yao graph is not a(c, δ)-power spanner for any constantc and
anyδ ≥ 1.

However, the sparsified Yao graph is a good weak spanner.

Theorem 14.12 ([1]) If k > 6, then the sparsified Yao graph is a weakc-spanner withc = 2
1−2 sin(θ/2)

.

Proof. Let G = (V, E) be the sparsified Yao graph andGY = (V, EY ) be the underlying Yao graph.
Consider any two nodesu,w ∈ V . Our goal is to show that there is a path fromu to w in G that is
inside a disk with centeru of radius||uw||/(1 − 2 sin(θ/2)). For any sector, define the Yao-neighbor
v of u as the (unique) nodev in that sector with(u, v) ∈ EY . Then we know:

• if a nodeu has no directed edge in a sector, then either the sector is empty or there is a Yao-
neighborv incident to an edge(u′, v) ∈ E whereu′ is in another sector ofu with ||u′v|| < ||uv||.
Furthermore,||uu′|| < ||uv|| becauseθ < π/3.

• Every nodeu has at least one neighborv because the sparsified Yao graph is connected.

We recursively construct the pathp(u, w) as follows: if(u,w) ∈ E thenp(u,w) = (u,w). Suppose
thatw is notu’s Yao-neighbor inCu,w butu has an edge to its Yao-neighbor,w1, in Cu,w. Thenp(u, w)
is defined as

p(u,w) = u ◦ p(w1, w)
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whereu ◦ p(w1, w) is the concatenation ofu with the node sequence for the pathp(w1, w) from w1 to
w that still needs to be determined.

Suppose thatu does not have a connection to its Yao-neighborw1 in Cu,w. Then we know that there
exists an edge(v1, w1) ∈ E wherev1 is outside of the sectorCu,w and||uv1|| < ||uw1||. Furthermore,
we have||uw1|| ≤ ||uw||. Then we replacew by w1 and repeat the arguments above. This iteration
ends whenu has a connection to a Yao-neighborwm or vm. Because every node has at least one
neighbor inE, this process terminates. If it terminates withwm, then we definep(u,w) as

p(u,w) = u ◦ p(wm, vm−1) ◦ p(wm−1, vm−2) ◦ . . . ◦ p(w2, v1) ◦ p(w1, w)

wherep(w1, w) may just be equal tow if w1 = w. Otherwise, we definep(u,w) as

p(u, w) = u ◦ vm ◦ p(wm, vm−1) ◦ . . . ◦ p(w2, v1) ◦ p(w1, w)

Now, notice that all nodesvi, wi are inside the disk of radius||uw|| aroundu. We continue to refine
the pathsp(wi, vi−1) as we did forp(u,w) above. Consider any fixed pair(wi, vi−1). Let r0 = ||uw||,
||uwi|| = ||uvi−1|| − d0, andσ = 2 sin(θ/2). Then it follows from Lemma 14.4 that

||wivi−1|| ≤ ||uvi−1|| − (1− σ)(||uvi−1|| − d0)

≤ r0 − (1− σ)(r0 − d0)

andwi has a distance of at mostr0 − d0 from u. Hence, the nodes identified forp(wi, vi−1) are inside
the disk of radius||wivi−1|| aroundwi and therefore inside the disk of radius

r0 + (r0 − (1− σ)(r0 − d0))− d0

aroundu. Continuing the refinements recursively, it follows that all nodes in theith recursion are
inside the disk of radius

∑i
j=0 ri −∑i

j=0 di aroundu whereri is recursively defined as

ri = ri−1 − (1− σ)(ri−1 − di−1) .

It holds that

∑

i≥0

ri −
∑

i≥0

di ≤ r0

∑

i≥0

σi + (1− σ)


∑

i≥0

di





∑

i≥0

σi


−∑

i≥0

di

= r0

∑

i≥0

σi =
1

1− σ
· ||uw||

Thus, there is a path fromu to w that is completely inside the disk of radius1/(1− σ)||uw|| aroundu,
which proves the theorem. ut

Though the sparsified Yao graph is not a relative neighborhood graph like the original Yao graph,
it is easy to check that when restricting to the UDG ofV , the proof of Theorem 14.12 is still correct
for all pairsu,w with ||uw|| ≤ 1. Hence, it follows from the proof of Theorem 13.4 that the sparsified
Yao graph is also a weakc-spanner of the UDG ofV . Thus, Theorem 13.10 implies that it is also a
power spanner of the UDG ofV for everyδ ≥ 2 and therefore useful for wireless ad hoc networks.

Next, we present a distributed protocol for the sparsified Yao graph. Again, we assume that each
nodeu ∈ V knows its neighborhoodN(u) and the current positions of the nodes inN(u). Nodeu
also keeps track of the following sets:
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• E(u): set of edges thatu currently has to nodes inN(u).

• R(u): set of nodes inN(u) requesting a connection tou.

Then the nodes work as given in Figure 6.

Protocol SparseYao:

For every nodeu ∈ V repeatedly do:
1) for every nodew ∈ N(u):

if w is the closest node inCu,w and it is possible (fromu’s view) that(u, w) ∈ SpY Gθ(V ) then
u sends a connection request tow (causingw to addu to R(w))

else removew from E(u) if it is there
2) for every nodew ∈ R(u):

if w is closest tou in w’s sector among all nodes inR(u) then
u sendsw permission to connect (causingw to addu to E(w))

elseu notifiesw that it gave permission to another nodew′ (s.t.w removesu from E(w))

Figure 6: A self-stabilizing protocol for the sparsified Yao graph.

Theorem 14.13The SparseYao protocol self-stabilizes in one round.

Proof. Suppose that all neighbor sets are up-to-date. Then every nodeu knows the correct nodesw
in step 1) that it has edges to in the Yao graph. Thus, at the end of step 1), every nodew knows all
the nodesv that havew as the closest node in one of their sectors. Hence, in step 2), every nodeu
can select incoming edges according to the specifications of the sparsified Yao graph and will inform
their starting points, which makes sure that at the end of step 2), all nodesw are added toE(u) with
(u,w) being an edge inSpY Gθ(V ). On the other hand,E(u) will contain only those nodesw with
(u,w) ∈ SpY Gθ(V ) because in step 1, all nodesw for which no request is sent are removed from
E(u), and in step 2, all nodesw that rejected the request are removed fromE(u). ut

14.2 Planar spanners

The most well known class of planar spanners are the Delaunay graphs. The Delaunay graph of a set
of points in IR2 is equivalent to their Delaunay triangulation and the dual of their Voronoi diagram.
Since the Delaunay triangulation of any point set inIR2 is planar, the Delaunay graph is planar. In the
following, let4(uvw) be the triangle formed by the nodesu, v, andw and©(uvw) be the unique
circle throughu, v, andw.

Definition 14.14 For anyV ⊂ IR2, theDelaunay graphDel(V ) of V consists of all edges(u, v) that
have a nodew ∈ V for which©(uvw) does not contain any other node ofV .

For an example of a Delaunay graph see Figure 7. It is known [2, 4] that the Delauney graph is a
geometricc spanner withc = 2π

3 cos(π/6)
≈ 2.42, but the Delaunay graph is difficult to maintain locally.

Therefore, several variants of it have been proposed. The most well-known variant is the Gabriel
graph.
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Figure 7: An example of a Delaunay graph.

Definition 14.15 For anyV ⊂ IR2, theGabriel graphGG(V ) of V consists of all edges(u, w) with
the property that there is no nodev ∈ V with

||uv||2 + ||vw||2 < ||uw||2

In words, the Gabriel graph ofV consists of all edges{u,w}with the property that the open sphere
throughu andw with diameter||uw|| does not contain any other node inV . An example of a Gabriel
graph is given in Figure 8. The Gabriel graph has the following interesting properties:

Figure 8: A Gabriel graph.

Theorem 14.16For any V ⊂ IR2, the Gabriel graph ofV is a relative neighborhood graph and a
subgraph of the Delaunay graph ofV .
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Proof. The Gabriel graph is a relative neighborhood graph because for all pairs(u,w) with (u,w) 6∈
GG(V ) there must be a nodev ∈ V with ||uv||2+ ||vw||2 < ||uw||2, which implies that||uv|| < ||uw||
and||vw|| < ||uw||.

It is also a subgraph of the Delaunay graph because for every edge(u,w) in GG(V ) it must hold
that there is no nodev in the open sphere of diameter||uw|| thoughu andw. If |V | > 2, we can then
just extend the sphere into any direction until it hits a nodev. In this case, there is no other node in
©(uvw) which implies that(u,w) is also an edge inDel(V ). ut

Unfortunately, Theorem 13.8 implies that the Gabriel graph is not a geometric spanner. With better
techniques one can even create a counterexample with stretch factorΩ(

√
n) [6]. But Theorem 13.13

implies that the Gabriel graph is a weak 2-spanner, and even more importantly, it is an optimal power
spanner for everyδ ≥ 2.

Theorem 14.17 ([6]) For everyδ ≥ 2, the Gabriel graph is an optimal power spanner.

Proof. Consider any pair of nodesu,w ∈ V and letp be their optimal energy path. Consider an
arbitrary edge{x, y} in p. Suppose that there is a nodev ∈ Sx,y. Then, by the Theorem of Pythagoras,
||xv||δ + ||vy||δ < ||xy||δ for everyδ ≥ 2. Hence, replacing the edge{x, y} in p by {x, v} and{v, y}
would reduce its energy, which would contradict our assumption thatp is an optimal energy path.
Hence, there cannot be a node inSx,y, and therefore{x, y} must be an edge in the Gabriel graph.
Thus,p must be a path in the Gabriel graph, which proves the theorem. ut

There is a simple protocol for the Gabriel graph. Again, suppose that every nodeu ∈ V knows
its neighborhoodN(u) in the UDG and the current positions of the nodes inN(u). Let E(u) be the
current set of connections of nodeu. Then the protocol in Figure 9 can be used. It has the following
performance:

Protocol Gabriel:

For every nodeu ∈ V repeatedly do:
1) for every nodew ∈ E(u):

if there is a nodev ∈ N(u) with ||uv||2 + ||vw||2 < ||uw|| then
removew from E(u)

2) for every nodew ∈ N(u) \ E(u):
if there is no nodev ∈ N(u) with ||uv||2 + ||vw||2 < ||uw|| then

addw to E(u)

Figure 9: A self-stabilizing protocol for Gabriel graphs.

Theorem 14.18The Gabriel protocol self-stabilizes in one round.

Proof. Follows directly from the protocol. ut

Unfortunately, the outdegree of a Gabriel graph can be as high asn − 1 (see Figure 10). Also,
since the Gabriel graph is not a geometric spanner, one may ask whether there are locally constructible
planar graphs that are geometric spanners. To investigate the latter issue, we define the following
classes of graphs.
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Figure 10: Gabriel graph for the unit disk with one node in its center and all other nodes on its border.

Definition 14.19 A triangle4(uvw) satisfies thek-localized Delaunay propertyif the interior of the
disk©(uvw) does not contain any node ofV that is ak-neighbor ofu, v, or w in UDG(V ) and
(u, v), (v, w), (w, u) ∈ UDG(V ). Such a triangle is called ak-localized Delaunay triangle.

Definition 14.20 Thek-localized Delaunay graphover V , denoted byLDel(k)(V ), has exactly all
Gabriel edges and the edges of allk-localized Delaunay triangles.

Let the constrained Delaunay graphof a point setV be defined asUDel(V ) = Del(V ) ∩
UDG(V ). The following facts are known aboutk-localized Delaunay graphs (e.g., [5]).

Theorem 14.21Localized Delaunay graphs have the following properties:

1. UDel(V ) ⊆ LDel(k)(V ) for all k ≥ 1.

2. LDel(k+1)(V ) ⊆ LDel(k)(V ) for all k ≥ 1.

3. LDel(2)(V ) is a planar graph.

4. LDel(1)(V ) is not always planar.

Proof. The first two items follow immediately from the definition of localized Delaunay graphs.
Suppose that it is possible to choose someV so thatLDel(2)(V ) is not a planar graph. Then

LDel(2)(V ) must contain two edges that cross each other. Let these edges be(v, v′) and (w, w′).
Since||vv′|| ≤ 1 and ||ww′|| ≤ 1 and the edges cross each other, there must be nodesu ∈ {v, v′}
andu′ ∈ {w,w′} so that||uu′|| ≤ 1. But then{v, v′, w, w′} ⊆ N2(u) and{v, v′, w, w′} ⊆ N2(u

′)
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which implies that choosing(v, v′) and(w, w′) would violate the definition ofLDel(2)(V ). Hence,
LDel(2)(V ) is always planar.

It remains to show that there is a setV so thatLDel(1)(V ) is not planar. For this consider the
example in Figure 11. In this example,©(u, v, w) does not contain any node inN(u), N(v), and
N(w), and©(x, y, z) does not contain any node inN(x), N(y), andN(z). Hence,(v, w) and(x, z)
are edges inLDel(1)(V ), but they intersect.

z

u
y

v
x

w

Figure 11:LDel(1)(V ) is not planar.

ut

SinceUDel(V ) is a geometricc-spanner withc ≈ 2.42 it follows thatLDel(2)(V ) is a geometric
c-spanner withc ≈ 2.42, and it is also planar. Also,LDel(2)(V ) can be easily maintained locally. See
Figure 12 for a self-stabilizing protocol. In this protocol we assume that every nodeu ∈ V knows its
2-neighborhood

N2(u) = ∪v∈N(u)N(v)

and the current positions of the nodes inN2(u).

Protocol LDel2:

For every nodeu ∈ V repeatedly do:
1) for every nodew ∈ E(u):

if {u,w} is not a Gabriel edge and does not belong to ak-localized Delaunay triangle then
removew from E(u)

2) for every nodew ∈ N(u) \E(u):
if {u,w} is a Gabriel edge or belongs to ak-localized Delaunay triangle then

addw to E(u)

Figure 12: A self-stabilizing protocol for the 2-localized Delaunay graph.

Theorem 14.22The LDel2 protocol self-stabilizes in one round.
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Proof. Follows directly from the protocol. ut

However, as mentioned above, Gabriel graphs and therefore all graphs of the localized Delaunay
graph family have the problem that the degree may be very high (see Figure 10). This problem can
be solved by constraining a Delaunay graph in the same way Yao graphs are constrained to sparsified
Yao graphs: cut the space around each node intok > 6 sectors of equal angle, and accept only the
connection of the closest node with an incoming edge in the original graph. Similar to the proof of
the sparsified Yao graph, this gives a sparsified Delaunay graph that is still a weak spanner. Other
constructions have been proposed that can even maintain a EuclideanO(1)-spanner but at the cost of
requiring an algorithm that may need a long time to stabilize at some solution [7].
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radio networks. InProc. of the 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages
230–237, 2002.

[2] D. Dobkin, S. Friedman, and K. Supowit. Delaunay graphs are almost as good as complete graphs.Discrete
Computational Geometry, pages 399–407, 1990.
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