3 Routing

So far, we have only looked at networks without dealing with the issue of how to send information in
them from one node to another. The problem of sending information in a network is knoautiag,.
Routing involves two basic activities:

e The determination of routing paths, and

e the transport of information groups (typically callpdcket} along the paths.

The first item is usually referred to gmth selectionand the second item is usually callpdcket
switching In this section we only concentrate on the problem of selecting good paths. Strategies for
sending packets along the paths will be discussed in the next section.

Certainly, if there is only one source-destination pair in the network that wants to exchange in-
formation (and all the edges in the network have the same capacity), then the best solution would be
to connect them via a shortest path. But what about multiple source-destination pairs? Choosing a
shortest path for each of them may lead to a high congestion and therefore a poor routing performance,
For example, consider a complete binary tree in which the leaves are connected so that they form an
n x n-mesh. Then for most pairs of nodes the shortest path would lead via the root of the binary
tree, but if many nodes want to exchange information, it is much better to use the mesh-edges insteac
because otherwise the root would become a highly congested point.

So it appears that a certain degree of coordination is necessary among the nodes to arrive at gooc
paths. A naive strategy would be to simply collect information about all the messages that the nodes
want to send out, and then to compute a best possible collection of paths for them. But this is certainly
not practical in a large network. Ideally, we would like to have a path selection strategy that allows the
nodes to decidmcally, i.e. without consulting other nodes, along which path (resp. edge) to forward a
packet. There are basically two approaches to thiatviousrouting andadaptiverouting. In oblivious
routing, a fixed system of optional paths is computeddvanceor every source-destination pair, and
every packet for that pair must travel along one of these optional paths (see Figure 1). Thus, the path &
packet takes only depends on its source-destination pair (and maybe a random choice to select one C
the options). Formally, this can be expressed as follows:

Definition 3.1 An oblivious routing strategy is specified bypath systen? and aweight function
w : P — IRT with the property that for every source-destination p@airt), the system of flow paths
Py for (s,t) in P fulfills 3 cp, , w(q) = 1.

In the case of a flow problem, the weights indicate how a flow frotm ¢ has to be split among
the paths ifP, ;, and in the case of a packet routing problem, the weights indicate the probability that
a packet from a sourceto a destinatiort chooses some particular patke P; ;.

In adaptive routing, the path taken by a packet may also depend on other packets or events taking
place in the network during its travel. However, in this section we will only concentrate on oblivious
routing. We start with an example of how to select a good path system in a mesh, followed by a general
lower bound on the congestion if every source-destination pair is just given a single path. Afterwards,
we show how to get around this lower bound for the hypercube. At the end we refine the path selection
problem for the mesh to be more competitive with best possible solutions than the path selection rule in
the following subsection, which will demonstrate that despite the restrictive nature of oblivious routing
it is a quite powerful concept.



Figure 1: A system of optional paths for the p@irt). As can be easily checkell, p, , w(q) = 1,
i.e. the weight condition in Definition 3.1 is satisfied.

3.1 Routing in a mesh

Consider the two-dimensionalx n-mesh. Every node in this mesh has a nunibey) € [n]> where
x represents its number in thedimension and represents its number in tipedimension. The: — y
routing strategyworks as follows:

Given a packet with source-destination pdit, v1), (z2,y2)), first route the packet along the
dimension from(zy, y1) to (x2, y;) and then along thg-dimension from(xs, y;) t0 (2, y2).

This is certainly an oblivious routing strategy, since the path of a packet only depends on its source
and destination. How well can this strategy now route arbitrary permutation routing problems? A
permutation routing problens a problem in which every node is the source of exactly one source-
destination pair and the destination of exactly one source-destination pair and all demands are equa
to 1. Thus, a permutation routing problem can be specified by a permutatibh— V" on the set of
nodesV’'.

Theorem 3.2 Thex — y routing strategy can route arbitrary permutations in anx n-mesh of unit-
capacity edges with congestion at mdgtand dilation at mostl, whered is the maximum distance of
a source-destination pair in the permutation.

Proof. We only prove the theorem for the worst case, namely, that paths can have a length of up to
2n. The general case will be an assignment.

Recall that in a permutation routing problem every node is the source and destination of a demand
of exactly 1. Thus, every-dimensional line in the mesh injects a total demand of at moshd every
y-dimensional line in the mesh has to absorb a total demand of atmW@g#ten using the —y routing
strategy, a total demand of at mastan therefore overlap at an edgerhdlirection, and a total demand
of at mostn can overlap at an edge indirection. Hence, the maximum fraction of each demand that
can be satisfied so that we obtain a feasible flow is at leastand therefore the congestion is at most
n. Since ther — y routing strategy uses shortest paths and the diameter of the-mesh is equal to
2(n — 1), the dilation of ther — y routing strategy can be at masi. O



Thus, when using the objective function behind the flow number, i.e. to minimiz¢ C'(S), D(S)}
over all feasible solution§, then ther — y routing strategy is optimal up to a factor of 2 because the
congestion never exceeds the dilation by more than a factor of 2.

3.2 The Borodin-Hopcroft lower bound

The nice property of the — y routing strategy is that it just has to specifige path for each source-
destination pair. Does this suffice to obtain good oblivious routing strategies for arbitrary networks?
The next theorem shows that there is a limit to this.

Theorem 3.3 ([1]) For every graphG of sizen and degreel and every oblivious routing strategy
using only a single path for every source-destination pair, there is a permutationvhich a node is

traversed by at leasf/n/d paths.

Proof. Let[n] ={0,...,n — 1} represent the set of all nodesGhand letP = {p;; : ¢,j € [n]} be
any path system with exactly one path for every source-destination pair. Asnsd=lled asource
for node: w.r.t. ¢ if p,, moves through. In Figure 2, for exampless is a source fog w.r.t. t.

Figure 2: lllustration of the paths ta

In the following, we will construct a permutationwith a high congestion. First we show that for
every nodef there are many nodes that have many sources w.ltet A(¢,z) = {i € [n] : ¢ has
w.r.t. ¢ at least: source$ be the set of all nodes that are contained in at leafferent paths of° that
lead tot. Then the following lemma holds.

Lemma 3.4 For everyt € [n], |A(t,2)| > ~.

Proof. For any fixedt € [n], letL = {p;; : s € [n] ands ¢ A(t, z)}, or in words, the number of
paths that start outside of(t, z), and letB C L be the set of all direct neighbors of nodesA(y, z)
that are not inA(, z).

Obviously,|L| = n — |A(t, z)|. Since the maximum degree 6fis d, it further holds thatB| <
|A(t, z)| - d. Because3 N A(t, z) = (), every node inB has at most — 1 paths that lead to. Hence,



Figure 3: Illustration ofA(t, z) and B.

|B|- (2 — 1) > L and therefore

A(t,2)]-d-(z=1) 2 |B| - (= 1) > |
= |A(t, z)|-d-(z—1) >n— \A(t 2)|
= |A(t,2)|-(d-(z—1)+1) >
= |A(t2)| 2 ! .

Now, let X (z) = {(i,t) : i,t € [n]andi € A(t, 2)} = Usep(A(t, 2) x {t}). Then it holds

Lemma 3.4 n n

2= |Alt2)| = T d s

For every node letT; = {t : (i,t) € X(2)} be the set of all destinations for which at leagiaths

move through. Since
2

i€[n]
but on the other hand there are onlysetsT;, there must exist a nodewith |T;| > +-. Choosez so
that> and|T;| are of the same size. This is the caseder ;- orz = /n/d.

Thus, there must be a nodéor which there are at Iea§tn/d destinations that have at qu#t%
paths through. Simply choosing for all of these destinations one after the other any source that has
not been chosen by a previous destination results in a partial permutation with an overlap of at least

\/n/d paths at. O

Thus, for constant degree networks with unit-capacity edges, the theorem implies that the conges-
tion for routing a permutation can be as high@s,/n). Whereas this is fine for the 2-dimensional
mesh, for networks with flow numbe?(log n) such as the butterfly this is unacceptably high, since
we know from Section 3 that every BMFP and therefore also every permutation routing problem can
be solved in the butterfly with congestion and dilation at ni@gtg n).
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3.3 Valiant’s Trick

We saw in Section 4.2 that oblivious routing strategies with only a single path for each source-
destination pair can have an extremely high congestion. But what about multiple path$?beet

the best possible solution for the multicommodity flow problem underlying the definitidn, oke.

F =max{C(5), D(S)}. From Theorem 3.12 we know that by applyifigwice we can solvevery
BMFP with congestion and dilation at maxst'. This works in a way that for every source-destination
pair (s, t) we first branch off the demand frosto all other nodes in the system and afterwards reunite

it at the destinatiort. Using S twice still gives an oblivious path system, but now we have many
optional paths for a flow. In the case of actually sending packets, this boils down to the following
strategy, which is a generalization of a well-known trick by Valiant [4]:

For every packet with source-destination pgirt), choose a random intermediate destination
v € [n] with probability ¢(v)/c(V') and send the packet first along a flow pathsifrom s to v and
then along a flow path i from v to ¢. (If there is more than one path frosto v resp.v totin S,
then there will be another random experiment for picking one of these optional paths based on their
flow values).

For the simple case tha&t only has a single path for every source-destination paircanyis the
same for all nodes, this boils down to:

For every packet with source-destination pairt), choose an intermediate destinatiore [n]
uniformly at random and send the packet first along the pathfiom s to v and then along the path
in S fromuvtot.

To demonstrate the effect of this trick, let us consider routing inddsgmensional hypercube.
Suppose that for every source-destination pair,, . . ., so), (ta_1,...,%) € {0,1}¢ we use the path
that first adjusts, to ¢y, thens; to ¢;, and so on, until all bits have been set to the destination’s values.
Let these paths form our path systémBecauseS has exactly one path for every source-destination

pair, it follows from Theorem 3.3 that there must be a permutation with at{é@ paths traversing

a node and therefore a congestion of at Ié@@)/d at an edge when usingdirectly. However, if
we use Valiant’s trick, we arrive at the following result.

Theorem 3.5 Using Valiant's trick in thed-dimensional hypercube, any BMFP can be routed with
congestion at mostd and dilation at mosgd.

Proof. Since thel-dimensional hypercube has a diameted @ind S uses shortest paths, the dilation
of Valiant’s trick must certainly be at mo&tl. Thus, it remains to bound the congestion. First, we
determine the number of patl$scrossing any edge of the hypercube. Consider some fixed €dge
and suppose thatfixes dimension for somei € {0,...,d — 1}, i.e. it connects two nodasandw

in the hypercube that only differ at dimensianWhen using the bit adjustment strategy, then there
are2’ possible sources that can reachefore crossing in the direction ofw, and2?-~! possible
destinations can be reached after crossinglso, there ar@’ possible sources that can reachefore
crossinge in the direction ofy, and2?~~! possible destinations can be reached after crogsiHgnce,

the number of all possible source-destination pairs whose pathseciegual to

2.9t 477l — gd (1)
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Now, it follows from the definition of the special BMAPRthat the demand of every source-destination
pair is equal to

d-d d
d-24  9d° (2)

So the total demand crossing an edge is equél to(2) = d, but every edge can only support a flow
of 1. Hence, the maximum concurrent flow valfiéor S is 1/d. This gives a congestion affor S
and therefore a congestion &f for Valiant’s trick, because it doubles the overlap. O

In general, it follows from Theorem 3.12:

Theorem 3.6 For any networkG with flow numberF' it holds: when using Valiant’s trick on an
optimal path collection fof’, any BMFP can be routed i& with congestion and dilation at mo2f.

In the case of actually sending packets instead of fl@&#sjs an upper bound on the expected
congestion caused by the packets in the network.

3.4 Oblivious routing for the mesh revisited

As we saw earlier, it is not really necessary to use Valiant’s trick for the mesh to be good for all
BMFPs in a sense that the congestion and dilation is always close to the flow number. However, if we
are more picky here, then the- y routing strategy is still not really satisfying, since there are routing
problems (other than BMFPs) where the- y routing strategy would perform very poorly. Imagine,

for example, that we have a multicommodity flow problem forithen-mesh with source-destination
pairs((s,0), (m,7)) foralli € {0,...,m—1}, where each pairhas a demand af, = m. When using

thex — y routing strategy, then all paths for the pairs would go though the édge- 1,0), (m,0)},
causing a congestion af2. If, however, all pairs would have usedya— x routing strategy, the
congestion would have only beem (see Figure 4). In the first case it would takém?) time steps

to send a flow ofn for every source-destination pair, whereas in the second case it would only take
O(m) steps to do this. Hence, there would be a large difference between what-thestrategy can
achieve and what can be achieved in the best case. A similar counterexample can also be found for the
y — x strategy. Also, Valiant’s trick does not help, because it would create a dilati®frof causing

a time ofQ)(n) to deliver all flows, whereas for the case that= /n this can already be achieved in
O(y/n) time steps. So we need a different approach.

Fortunately, there is a better approach. For simplicity, we assume that we have armesh of
unit-capacity edges whereis a power of 2. For every source-destination gait), a system of flow
paths froms to ¢ is recursively constructed in the following way:

Let M, be the smallest possib® x 2*-mesh that has in a corner and that containg(if this
IS not possible)\/; , represents the whole x n-mesh). The flow paths are constructed recursively as
shown in Figure 5. Initially, all the flow starts at Then, it is evenly distributed among all nodes in
M, using a mixedr — y andy — x routing strategy as sketched in Figure 5(b). That is, each node in
M, receives a quarter of the flow, and the flow for the node at the opposite corner 6f, comes in
equal parts from the other two nodes/ify. Afterwards, the flow inM/, is evenly distributed among
all nodes in)M,. Finally, the flow in), is evenly distributed among all nodes it ;. The same is
done from¢. Thus, the beginning and endpoints of the flow paths fsaandt: meet in/, ;, resulting
in a legal flow froms to ¢.
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Figure 4:2 — y routing vs.y — x routing on a mesh.

It is clear that this strategy is oblivious, but how good is it? For this we need some notation. For
any multicommodity flow problen® in then x n-mesh letCZ, be the best possible congestion and
and D& be the best possible dilation achievable fo¢by possibly different solutions).

Theorem 3.7 For any multicommaodity flow problef our recursive routing scheme has a congestion
of O(CEpr - logn) and a dilation ofO(D&pr).

Proof. Suppose that/,; is a2* x 2*-mesh. Ther andt must have a distance of at lea@t'. On the
other side, the longest possible path our routing strategy would construct from some toosteme
nodet in M;, is

k—1
23220 —1)+2(2"—1)<4-2"+2.2"=6-2".
=0

Thus, the dilation of our routing strategy is at most a constant times the maximum distance between a
source-destination pair it and therefore bounded BY( D).

Hence, it remains to bound the congestion. Our aim will be to show that for géy#rg congestion
caused by al* x 2%-meshes used by source-destination pairs is at meSt) ). Since there are
only log n differentk, this results in a total congestion 6fCJp 1 - logn). So consider some fixeld
Given a source-destination pdir, ) with demandd, let M be a2* x 2k-mesh that is used b, t) to
spread its demand to all nodeshin as shown in Figure 5(b). In this cas¥, has &2~ x 2¢¥~!-mesh
M’ in which the demand was initially evenly distributed among all of its nodes. That is, every node in
M’ had a demand af/22(*~1), When using a mixed — y andy — = routing strategy for spreading it
out to M, every edge is crossed by a demand of at most
d

3 d k-1
g e Y Soe (3)
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Figure 5: Recursive routing strategy fromo ¢. (a) illustrates the recursive decomposition into sub-
meshes and (b) illustrates the distribution of flow from the shaded sub-mesh to the three other sub-
meshes in its next higher mesh.

Now consider an edgethat is contained imn different2* x 2*-meshes\/y, ..., M,, that belong to
source-destination paifs,, t;), ..., (Sm, t,n,) With demandsi,, . . ., d,,. Then it follows from (3) that
e is crossed by a total demand of at mast - -7, d;. On the other hand, one can dra@*a! x 2++1-
mesh/ arounde that contains all sub-mesh@dsg;. Suppose that of the total demado= >, d;
a demand of!’ is routed completely inside af/ from source to destination, and a demandi'6fs
leaving or entering)/ at some point. Since the distance betwegandt; must be at leas?*~! for
everyi, the average amount of the demafidrossing an edge if/ must be at least

2k71d/ d
9. 92(k+1) _ Qk+d -

Furthermore, the average amount of demand crossing an ed@g it¥) must be at least

d// d//

4 . 2k+1 o ok+3

Since either!’ or d’ must be at leasi/2, everyrouting strategy must therefore have an edge that is
crossed by a total demand 9fd/2%), i.e. C5pr = Q(d/2%). On the other hand, we calculated that
edgee is crossed by a demand 6f(d/2*). Hence, the congestion caused by our recursive scheme is
O(CEpr), which completes the proof. 0

This result is optimal since it is known that feveryoblivious routing strategy on the x n-mesh
there is a routing problen® for which the strategy has a congestiod "4, - log n) [2].

3.5 Routing in decomposable networks

The recursive routing technique for the mesh can also be used for other classes of networks. Given any
graphG = (V, E') with edge capacities specified bya hierarchical decomposition treg(G) of G is
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a binary tree in which every nodes associated with a subsét of V' so that the following conditions
are met:

¢ the root represents,
e for every node. in 7'(G) with two childrenv andw, V,, N V,, = § andV, U V,, = V,,, and
e for every leafu in T'(G), u is associated with a single nodeGh

The subgraph induced by a nodén 7'(G) is the subgrapldz, = (V,, E,) with £, = {{v,w} € E |
v,w € V,}. As an example, the decomposition tree af & n-mesh may look like in Figure 6.

Figure 6: A possible decomposition tree for thex n-mesh. In every node, the subgraph induced by
that node is shown.

We want to use the decomposition trE&~) in the following way when routing a flow of valug
from a nodev to a nodew in G-

Suppose that we have an oblivious routing strat&gyfor every graphi?, with u € T(G). Let
u, be the node irf’(G) representing andwu,, be the node if'(G) representingu, and let(u; =
Uy, U, - - ., U = Uy) bE the unique path from, to u,, in T(G). Forany: € {1,...,k — 1} let M, be
the multicommodity flow problem in which every pair of nodesy) with z € V,,, andy € V., is
associated with a demand of

G, () G, (Y)

dyy = f -
w=1r G, (Vi) €y, Varsn)

wherecq (s) denotes the capacity of node (seth graphG’. Then every node € V,,, is the origin of
[ ca,,(z)/cq,,(Vy,) flow and every nodg € V,,,, is the destination of - cc,,. , (v)/cc.,,, (Vi)
flow, as is easy to check. Hence, solutions to these flow problems can be concatenated to give a
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solution for sending a flow of from v to w in G. In order to route the flow fol/;, the oblivious
routing strategyiz,,; is used wherg =i + 1if V,, C V,,,,, and otherwisg = i.

For the strategy above to worky, has to be connected for all nodesin 7'(G), and for the
strategy to work well, every+,, should have a flow number that is as low as possible. This is where
our definition of decomposable graphs comes in.

Definition 3.8 We call a graphiZ (nicely) decomposablé G has a decomposition tréE(G') so that
for all nodesu in T'(G) with child v it holds for the flow number af, that

cc, (Vo) )

FlG.) =0 <<vv>

and|V,| = O(|V.)).

Then x n-mesh, the hypercube, and the hypercubic networks presented in the previous section can
be shown to satisfy these conditions. For these graphs the following result holds.

Theorem 3.9 If G is decomposable then there is an oblivious routing strategy-fep that any mul-
ticommodity flow problen® can be routed with congestigh(Clp1 log n).

Proof. Suppose that? = (V, ) is decomposable, and I&{G) be the corresponding decomposition
tree. For any node in 7'(G) let R, be the oblivious routing strategy resulting from the optimal
solution of the balanced multicommodity flow problem B(G.,) (recall the definition of the flow
number).

Consider any multicommodity flow proble and let(s,¢) be any source-destination pair in
with demandd. Our aim will be to show that for every level @f(G), the congestion caused by
routing the demand for (s, t) according to our routing strategy above is bounded)b@gslf%). If we
can show this, then the congestion of routiigs bounded byO(Cgp+) in every level. Due to the
condition that|V,,| = ©(|V,|) in Definition 3.8,7(G) can have onlyO(logn) levels and, hence, the
overall congestion of our routing scheme is bounded¥¢ 5+ log n), as desired.

Consider any fixed pairs, t) with positive demand and let(u; = s, us, ..., u; = t) be the unique
path froms to ¢ in 7'(G). Let us focus on some fixed stage {1,...,%k — 1} of the routing, and let
v = u; andw = u,;1. Without loss of generality we assume thatc V,, (for V,, C V, we just have
to replacéV,, with V,, ands with ¢ below). Sinces € V, butt ¢ V,,, any routing strategy fafs, ¢) must
send the total demand dfout of G,,, which means that some edgén the cut(V,, V,) must have a
congestion of at least

d cale) d
cale) ca(Ve, Vo) ca(Ve, Vo)

Thus,CS. = Q(d/cq(V,, V,). When using our oblivious routing strategy for stageve produce a
congestion of at most

d
Fr—
ca, (Vo)
in G, because the demands, are defined as

g =g, () cc,(y)
o CG?I(VU) ’ CGw(Vw)
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and the demandsg, , of the balanced multicommodity flow problem f6¥(G,,) are defined as

4, = eel@ ault) , calo) canly) | _d_

ca, Vw) = ca,(Vaw) ca, (Vo)

For F - d/cg,(V,) to be bounded by (d/cq(V,, V,) it must hold that

r=o( )

which is the case because of Definition 3.8. In this case, the congestion produced by our routing
strategy for stagéis bounded byD(CgF’f%), which completes the proof. O

One may ask whether good decompositions only exist for specific classes of graphs or whether any
graph is decomposable (when allowing some additional polylogarithmic factor in our condition for the
flow number in Definition 3.8). Surprisingly,&ke has shown that this is always possible, implying
the following result:

Theorem 3.10 ([3]) For every network with non-negative capacities there is an oblivious routing
strategy that achieves for every multicommodity flow probfearcongestion o (CEpr - polylog(n)).

Hence, oblivious routing is a surprisingly powerful concept.
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