
3 Routing

So far, we have only looked at networks without dealing with the issue of how to send information in
them from one node to another. The problem of sending information in a network is known asrouting.
Routing involves two basic activities:

• The determination of routing paths, and

• the transport of information groups (typically calledpackets) along the paths.

The first item is usually referred to aspath selection, and the second item is usually calledpacket
switching. In this section we only concentrate on the problem of selecting good paths. Strategies for
sending packets along the paths will be discussed in the next section.

Certainly, if there is only one source-destination pair in the network that wants to exchange in-
formation (and all the edges in the network have the same capacity), then the best solution would be
to connect them via a shortest path. But what about multiple source-destination pairs? Choosing a
shortest path for each of them may lead to a high congestion and therefore a poor routing performance.
For example, consider a complete binary tree in which the leaves are connected so that they form an
n × n-mesh. Then for most pairs of nodes the shortest path would lead via the root of the binary
tree, but if many nodes want to exchange information, it is much better to use the mesh-edges instead
because otherwise the root would become a highly congested point.

So it appears that a certain degree of coordination is necessary among the nodes to arrive at good
paths. A naive strategy would be to simply collect information about all the messages that the nodes
want to send out, and then to compute a best possible collection of paths for them. But this is certainly
not practical in a large network. Ideally, we would like to have a path selection strategy that allows the
nodes to decidelocally, i.e. without consulting other nodes, along which path (resp. edge) to forward a
packet. There are basically two approaches to that:obliviousrouting andadaptiverouting. In oblivious
routing, a fixed system of optional paths is computedin advancefor every source-destination pair, and
every packet for that pair must travel along one of these optional paths (see Figure 1). Thus, the path a
packet takes only depends on its source-destination pair (and maybe a random choice to select one of
the options). Formally, this can be expressed as follows:

Definition 3.1 An oblivious routing strategy is specified by apath systemP and aweight function
w : P → IR+ with the property that for every source-destination pair(s, t), the system of flow paths
Ps,t for (s, t) in P fulfills

∑
q∈Ps,t

w(q) = 1.

In the case of a flow problem, the weights indicate how a flow froms to t has to be split among
the paths inPs,t, and in the case of a packet routing problem, the weights indicate the probability that
a packet from a sources to a destinationt chooses some particular pathp ∈ Ps,t.

In adaptive routing, the path taken by a packet may also depend on other packets or events taking
place in the network during its travel. However, in this section we will only concentrate on oblivious
routing. We start with an example of how to select a good path system in a mesh, followed by a general
lower bound on the congestion if every source-destination pair is just given a single path. Afterwards,
we show how to get around this lower bound for the hypercube. At the end we refine the path selection
problem for the mesh to be more competitive with best possible solutions than the path selection rule in
the following subsection, which will demonstrate that despite the restrictive nature of oblivious routing
it is a quite powerful concept.

1

s

t

1/4

1/8

1/8

1/2

Figure 1: A system of optional paths for the pair(s, t). As can be easily checked,
∑

q∈Ps,t
w(q) = 1,

i.e. the weight condition in Definition 3.1 is satisfied.

3.1 Routing in a mesh

Consider the two-dimensionaln× n-mesh. Every node in this mesh has a number(x, y) ∈ [n]2 where
x represents its number in thex-dimension andy represents its number in they-dimension. Thex− y
routing strategyworks as follows:

Given a packet with source-destination pair((x1, y1), (x2, y2)), first route the packet along thex-
dimension from(x1, y1) to (x2, y1) and then along they-dimension from(x2, y1) to (x2, y2).

This is certainly an oblivious routing strategy, since the path of a packet only depends on its source
and destination. How well can this strategy now route arbitrary permutation routing problems? A
permutation routing problemis a problem in which every node is the source of exactly one source-
destination pair and the destination of exactly one source-destination pair and all demands are equal
to 1. Thus, a permutation routing problem can be specified by a permutationπ : V → V on the set of
nodesV .

Theorem 3.2 Thex − y routing strategy can route arbitrary permutations in ann × n-mesh of unit-
capacity edges with congestion at most2d and dilation at mostd, whered is the maximum distance of
a source-destination pair in the permutation.

Proof. We only prove the theorem for the worst case, namely, that paths can have a length of up to
2n. The general case will be an assignment.

Recall that in a permutation routing problem every node is the source and destination of a demand
of exactly 1. Thus, everyx-dimensional line in the mesh injects a total demand of at mostn, and every
y-dimensional line in the mesh has to absorb a total demand of at mostn. When using thex−y routing
strategy, a total demand of at mostn can therefore overlap at an edge inx-direction, and a total demand
of at mostn can overlap at an edge iny-direction. Hence, the maximum fraction of each demand that
can be satisfied so that we obtain a feasible flow is at least1/n, and therefore the congestion is at most
n. Since thex− y routing strategy uses shortest paths and the diameter of then× n-mesh is equal to
2(n− 1), the dilation of thex− y routing strategy can be at most2n. ut

2

Thus, when using the objective function behind the flow number, i.e. to minimizemax{C(S), D(S)}
over all feasible solutionsS, then thex− y routing strategy is optimal up to a factor of 2 because the
congestion never exceeds the dilation by more than a factor of 2.

3.2 The Borodin-Hopcroft lower bound

The nice property of thex − y routing strategy is that it just has to specifyonepath for each source-
destination pair. Does this suffice to obtain good oblivious routing strategies for arbitrary networks?
The next theorem shows that there is a limit to this.

Theorem 3.3 ([1]) For every graphG of sizen and degreed and every oblivious routing strategy
using only a single path for every source-destination pair, there is a permutationπ in which a node is
traversed by at least

√
n/d paths.

Proof. Let [n] = {0, . . . , n− 1} represent the set of all nodes inG and letP = {pi,j : i, j ∈ [n]} be
any path system with exactly one path for every source-destination pair. A nodes is called asource
for nodei w.r.t. t if ps,t moves throughi. In Figure 2, for example,s3 is a source fori w.r.t. t.

G

3

4

2

1

t

s

s

s

s

i

Figure 2: Illustration of the paths tok.

In the following, we will construct a permutationπ with a high congestion. First we show that for
every nodet there are many nodes that have many sources w.r.t.t. Let A(t, z) = {i ∈ [n] : i has
w.r.t. t at leastz sources} be the set of all nodes that are contained in at leastz different paths ofP that
lead tot. Then the following lemma holds.

Lemma 3.4 For everyt ∈ [n], |A(t, z)| ≥ n
d·z .

Proof. For any fixedt ∈ [n], let L = {ps,t : s ∈ [n] ands 6∈ A(t, z)}, or in words, the number of
paths that start outside ofA(t, z), and letB ⊆ L be the set of all direct neighbors of nodes inA(t, z)
that are not inA(t, z).

Obviously,|L| = n − |A(t, z)|. Since the maximum degree ofG is d, it further holds that|B| ≤
|A(t, z)| · d. BecauseB ∩ A(t, z) = ∅, every node inB has at mostz − 1 paths that lead tot. Hence,

3

G

B

A()t, z

t

Figure 3: Illustration ofA(t, z) andB.

|B| · (z − 1) ≥ L and therefore

|A(t, z)| · d · (z − 1) ≥ |B| · (z − 1) ≥ |L|
⇒ |A(t, z)| · d · (z − 1) ≥ n− |A(t, z)|
⇒ |A(t, z)| · (d · (z − 1) + 1) ≥ n

⇒ |A(t, z)| ≥ n

d · (z − 1) + 1
≥ n

d · z .

ut

Now, letX(z) = {(i, t) : i, t ∈ [n] andi ∈ A(t, z)} =
⋃

t∈[n](A(t, z)× {t}). Then it holds

|X(z)| = ∑

t∈[n]

|A(t, z)| Lemma 3.4≥ n · n

d · z =
n2

d · z .

For every nodei let Ti = {t : (i, t) ∈ X(z)} be the set of all destinations for which at leastz paths
move throughi. Since

∑

i∈[n]

|Ti| = |X(z)| ≥ n2

d · z
but on the other hand there are onlyn setsTi, there must exist a nodei with |Ti| ≥ n

d·z . Choosez so

thatz and|Ti| are of the same size. This is the case forz = n
d·z or z =

√
n/d.

Thus, there must be a nodei for which there are at least
√

n/d destinations that have at least
√

n/d
paths throughi. Simply choosing for all of these destinations one after the other any source that has
not been chosen by a previous destination results in a partial permutation with an overlap of at least√

n/d paths ati. ut

Thus, for constant degree networks with unit-capacity edges, the theorem implies that the conges-
tion for routing a permutation can be as high asΘ(

√
n). Whereas this is fine for the 2-dimensional

mesh, for networks with flow numberO(log n) such as the butterfly this is unacceptably high, since
we know from Section 3 that every BMFP and therefore also every permutation routing problem can
be solved in the butterfly with congestion and dilation at mostO(log n).

4

3.3 Valiant’s Trick

We saw in Section 4.2 that oblivious routing strategies with only a single path for each source-
destination pair can have an extremely high congestion. But what about multiple paths? LetS be
the best possible solution for the multicommodity flow problem underlying the definition ofF , i.e.
F = max{C(S), D(S)}. From Theorem 3.12 we know that by applyingS twice we can solveevery
BMFP with congestion and dilation at most2F . This works in a way that for every source-destination
pair (s, t) we first branch off the demand froms to all other nodes in the system and afterwards reunite
it at the destinationt. Using S twice still gives an oblivious path system, but now we have many
optional paths for a flow. In the case of actually sending packets, this boils down to the following
strategy, which is a generalization of a well-known trick by Valiant [4]:

For every packet with source-destination pair(s, t), choose a random intermediate destination
v ∈ [n] with probability c(v)/c(V) and send the packet first along a flow path inS from s to v and
then along a flow path inS from v to t. (If there is more than one path froms to v resp.v to t in S,
then there will be another random experiment for picking one of these optional paths based on their
flow values).

For the simple case thatS only has a single path for every source-destination pair andc(v) is the
same for all nodesv, this boils down to:

For every packet with source-destination pair(s, t), choose an intermediate destinationv ∈ [n]
uniformly at random and send the packet first along the path inS from s to v and then along the path
in S from v to t.

To demonstrate the effect of this trick, let us consider routing in thed-dimensional hypercube.
Suppose that for every source-destination pair(sd−1, . . . , s0), (td−1, . . . , t0) ∈ {0, 1}d we use the path
that first adjustss0 to t0, thens1 to t1, and so on, until all bits have been set to the destination’s values.
Let these paths form our path systemS. BecauseS has exactly one path for every source-destination
pair, it follows from Theorem 3.3 that there must be a permutation with at least

√
2d/d paths traversing

a node and therefore a congestion of at least(
√

2d/d)/d at an edge when usingS directly. However, if
we use Valiant’s trick, we arrive at the following result.

Theorem 3.5 Using Valiant’s trick in thed-dimensional hypercube, any BMFP can be routed with
congestion at most2d and dilation at most2d.

Proof. Since thed-dimensional hypercube has a diameter ofd andS uses shortest paths, the dilation
of Valiant’s trick must certainly be at most2d. Thus, it remains to bound the congestion. First, we
determine the number of pathsS crossing any edge of the hypercube. Consider some fixed edgee,
and suppose thate fixes dimensioni for somei ∈ {0, . . . , d − 1}, i.e. it connects two nodesv andw
in the hypercube that only differ at dimensioni. When using the bit adjustment strategy, then there
are2i possible sources that can reachv before crossinge in the direction ofw, and2d−i−1 possible
destinations can be reached after crossinge. Also, there are2i possible sources that can reachw before
crossinge in the direction ofv, and2d−i−1 possible destinations can be reached after crossinge. Hence,
the number of all possible source-destination pairs whose paths crosse is equal to

2 · 2i · 2d−i−1 = 2d . (1)

5

Now, it follows from the definition of the special BMFPB that the demand of every source-destination
pair is equal to

d · d
d · 2d

=
d

2d
. (2)

So the total demand crossing an edge is equal to(1) · (2) = d, but every edge can only support a flow
of 1. Hence, the maximum concurrent flow valuef for S is 1/d. This gives a congestion ofd for S
and therefore a congestion of2d for Valiant’s trick, because it doubles the overlap. ut

In general, it follows from Theorem 3.12:

Theorem 3.6 For any networkG with flow numberF it holds: when using Valiant’s trick on an
optimal path collection forF , any BMFP can be routed inG with congestion and dilation at most2F .

In the case of actually sending packets instead of flows,2F is an upper bound on the expected
congestion caused by the packets in the network.

3.4 Oblivious routing for the mesh revisited

As we saw earlier, it is not really necessary to use Valiant’s trick for the mesh to be good for all
BMFPs in a sense that the congestion and dilation is always close to the flow number. However, if we
are more picky here, then thex− y routing strategy is still not really satisfying, since there are routing
problems (other than BMFPs) where thex − y routing strategy would perform very poorly. Imagine,
for example, that we have a multicommodity flow problem for then×n-mesh with source-destination
pairs((i, 0), (m, i)) for all i ∈ {0, . . . ,m−1}, where each pairi has a demand ofdi = m. When using
thex− y routing strategy, then all paths for the pairs would go though the edge{(m− 1, 0), (m, 0)},
causing a congestion ofm2. If, however, all pairs would have used ay − x routing strategy, the
congestion would have only beenm (see Figure 4). In the first case it would takeΘ(m2) time steps
to send a flow ofm for every source-destination pair, whereas in the second case it would only take
O(m) steps to do this. Hence, there would be a large difference between what thex − y strategy can
achieve and what can be achieved in the best case. A similar counterexample can also be found for the
y − x strategy. Also, Valiant’s trick does not help, because it would create a dilation ofΘ(n), causing
a time ofΩ(n) to deliver all flows, whereas for the case thatm =

√
n this can already be achieved in

O(
√

n) time steps. So we need a different approach.
Fortunately, there is a better approach. For simplicity, we assume that we have ann × n-mesh of

unit-capacity edges wheren is a power of 2. For every source-destination pair(s, t), a system of flow
paths froms to t is recursively constructed in the following way:

Let Ms,t be the smallest possible2k × 2k-mesh that hass in a corner and that containst (if this
is not possible,Ms,t represents the wholen× n-mesh). The flow paths are constructed recursively as
shown in Figure 5. Initially, all the flow starts ats. Then, it is evenly distributed among all nodes in
M0 using a mixedx − y andy − x routing strategy as sketched in Figure 5(b). That is, each node in
M0 receives a quarter of the flow, and the flow for the node at the opposite corner ofs in M0 comes in
equal parts from the other two nodes inM0. Afterwards, the flow inM0 is evenly distributed among
all nodes inM4. Finally, the flow inM4 is evenly distributed among all nodes inMs,t. The same is
done fromt. Thus, the beginning and endpoints of the flow paths froms andt meet inMs,t, resulting
in a legal flow froms to t.

6

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

x-y routing strategy

y
-x

 r
o

u
ti

n
g

 s
tr

at
eg

y

Figure 4:x− y routing vs.y − x routing on a mesh.

It is clear that this strategy is oblivious, but how good is it? For this we need some notation. For
any multicommodity flow problemP in then× n-mesh letCP

OPT be the best possible congestion and
andDP

OPT be the best possible dilation achievable forP (by possibly different solutions).

Theorem 3.7 For any multicommodity flow problemP our recursive routing scheme has a congestion
of O(CP

OPT · log n) and a dilation ofO(DP
OPT).

Proof. Suppose thatMs,t is a2k×2k-mesh. Thens andt must have a distance of at least2k−1. On the
other side, the longest possible path our routing strategy would construct from some nodes to some
nodet in Ms,t is

2
k−1∑

i=0

2(2i − 1) + 2(2k − 1) ≤ 4 · 2k + 2 · 2k = 6 · 2k .

Thus, the dilation of our routing strategy is at most a constant times the maximum distance between a
source-destination pair inP and therefore bounded byO(DP

OPT).
Hence, it remains to bound the congestion. Our aim will be to show that for everyk, the congestion

caused by all2k × 2k-meshes used by source-destination pairs is at mostO(CP
OPT). Since there are

only log n differentk, this results in a total congestion ofO(CP
OPT · log n). So consider some fixedk.

Given a source-destination pair(s, t) with demandd, let M be a2k × 2k-mesh that is used by(s, t) to
spread its demand to all nodes inM as shown in Figure 5(b). In this case,M has a2k−1 × 2k−1-mesh
M ′ in which the demand was initially evenly distributed among all of its nodes. That is, every node in
M ′ had a demand ofd/22(k−1). When using a mixedx− y andy − x routing strategy for spreading it
out toM , every edge is crossed by a demand of at most

3

8
· d

22(k−1)
· 2k−1 ≤ d

2k
. (3)

7

M2 M3

M1

9

M6

M4

M7

M5

10M M11

M8 M

M0

s

t

(b)(a)

1/4 remains

1/8

1/8

3/8

3/8

Figure 5: Recursive routing strategy froms to t. (a) illustrates the recursive decomposition into sub-
meshes and (b) illustrates the distribution of flow from the shaded sub-mesh to the three other sub-
meshes in its next higher mesh.

Now consider an edgee that is contained inm different2k × 2k-meshesM1, . . . ,Mm that belong to
source-destination pairs(s1, t1), . . . , (sm, tm) with demandsd1, . . . , dm. Then it follows from (3) that
e is crossed by a total demand of at most2−k ·∑m

i=1 di. On the other hand, one can draw a2k+1×2k+1-
meshM arounde that contains all sub-meshesMi. Suppose that of the total demandd =

∑m
i=1 di

a demand ofd′ is routed completely inside ofM from source to destination, and a demand ofd′′ is
leaving or enteringM at some point. Since the distance betweensi andti must be at least2k−1 for
everyi, the average amount of the demandd′ crossing an edge inM must be at least

2k−1d′

2 · 22(k+1)
=

d′

2k+4
.

Furthermore, the average amount of demand crossing an edge in(M, M̄) must be at least

d′′

4 · 2k+1
=

d′′

2k+3
.

Since eitherd′ or d′′ must be at leastd/2, everyrouting strategy must therefore have an edge that is
crossed by a total demand ofΩ(d/2k), i.e. CP

OPT = Ω(d/2k). On the other hand, we calculated that
edgee is crossed by a demand ofO(d/2k). Hence, the congestion caused by our recursive scheme is
O(CP

OPT), which completes the proof. ut

This result is optimal since it is known that foreveryoblivious routing strategy on then× n-mesh
there is a routing problemP for which the strategy has a congestion ofΩ(CP

OPT · log n) [2].

3.5 Routing in decomposable networks

The recursive routing technique for the mesh can also be used for other classes of networks. Given any
graphG = (V,E) with edge capacities specified byc, ahierarchical decomposition treeT (G) of G is

8

a binary tree in which every nodev is associated with a subsetVv of V so that the following conditions
are met:

• the root representsV ,

• for every nodeu in T (G) with two childrenv andw, Vv ∩ Vw = ∅ andVv ∪ Vw = Vu, and

• for every leafu in T (G), u is associated with a single node inG.

The subgraph induced by a nodeu in T (G) is the subgraphGu = (Vu, Eu) with Eu = {{v, w} ∈ E |
v, w ∈ Vu}. As an example, the decomposition tree of an× n-mesh may look like in Figure 6.

1110

000

0100

10

0

.

0 1

0 1 0 1

0 1 0 1 0 1 1

Figure 6: A possible decomposition tree for then× n-mesh. In every node, the subgraph induced by
that node is shown.

We want to use the decomposition treeT (G) in the following way when routing a flow of valuef
from a nodev to a nodew in G:

Suppose that we have an oblivious routing strategyRu for every graphGu with u ∈ T (G). Let
uv be the node inT (G) representingv anduw be the node inT (G) representingw, and let(u1 =
uv, u2, . . . , uk = uw) be the unique path fromuv to uw in T (G). For anyi ∈ {1, . . . , k − 1} let Mi be
the multicommodity flow problem in which every pair of nodes(x, y) with x ∈ Vui

andy ∈ Vui+1
is

associated with a demand of

dx,y = f · cGui
(x) · cGui+1

(y)

cGui
(Vui

) · cGui+1
(Vui+1

)

wherecG′(s) denotes the capacity of node (set)s in graphG′. Then every nodex ∈ Vui
is the origin of

f · cGui
(x)/cGui

(Vui
) flow and every nodey ∈ Vui+1

is the destination off · cGui+1
(y)/cGui+1

(Vui+1
)

flow, as is easy to check. Hence, solutions to these flow problems can be concatenated to give a

9

solution for sending a flow off from v to w in G. In order to route the flow forMi, the oblivious
routing strategyRuj

is used wherej = i + 1 if Vui
⊂ Vui+1

and otherwisej = i.
For the strategy above to work,Gu has to be connected for all nodesu in T (G), and for the

strategy to work well, everyGu should have a flow number that is as low as possible. This is where
our definition of decomposable graphs comes in.

Definition 3.8 We call a graphG (nicely) decomposableif G has a decomposition treeT (G) so that
for all nodesu in T (G) with childv it holds for the flow number ofGu that

F (Gu) = O

(
cGv(Vv)

cG(Vv, V̄v)

)

and|Vv| = Θ(|Vu|).

Then×n-mesh, the hypercube, and the hypercubic networks presented in the previous section can
be shown to satisfy these conditions. For these graphs the following result holds.

Theorem 3.9 If G is decomposable then there is an oblivious routing strategy forG so that any mul-
ticommodity flow problemP can be routed with congestionO(CP

OPT log n).

Proof. Suppose thatG = (V, E) is decomposable, and letT (G) be the corresponding decomposition
tree. For any nodeu in T (G) let Ru be the oblivious routing strategy resulting from the optimal
solution of the balanced multicommodity flow problem forF (Gu) (recall the definition of the flow
number).

Consider any multicommodity flow problemP and let(s, t) be any source-destination pair inP
with demandd. Our aim will be to show that for every level ofT (G), the congestion caused by
routing the demandd for (s, t) according to our routing strategy above is bounded byO(C

(s,t)
OPT). If we

can show this, then the congestion of routingP is bounded byO(CP
OPT) in every level. Due to the

condition that|Vv| = Θ(|Vu|) in Definition 3.8,T (G) can have onlyO(log n) levels and, hence, the
overall congestion of our routing scheme is bounded byO(CP

OPT log n), as desired.
Consider any fixed pair(s, t) with positive demandd and let(u1 = s, u2, . . . , uk = t) be the unique

path froms to t in T (G). Let us focus on some fixed stagei ∈ {1, . . . , k − 1} of the routing, and let
v = ui andw = ui+1. Without loss of generality we assume thatVv ⊂ Vw (for Vw ⊂ Vv we just have
to replaceVv with Vw ands with t below). Sinces ∈ Vv but t 6∈ Vv, any routing strategy for(s, t) must
send the total demand ofd out of Gv, which means that some edgee in the cut(Vv, V̄v) must have a
congestion of at least

d

cG(e)
· cG(e)

cG(Vv, V̄v)
=

d

cG(Vv, V̄v)

Thus,C(s,t)
OPT = Ω(d/cG(Vv, V̄v). When using our oblivious routing strategy for stagei, we produce a

congestion of at most

F · d

cGv(Vv)

in Gw because the demandsdx,y are defined as

dx,y = d · cGv(x) · cGw(y)

cGv(Vv) · cGw(Vw)

10

and the demandsd′x,y of the balanced multicommodity flow problem forF (Gw) are defined as

d′x,y =
cGw(x) · cGw(y)

cGw(Vw)
≥ cGv(x) · cGw(y)

cGw(Vw)
=

d

cGv(Vv)
· dx,y

ForF · d/cGv(Vv) to be bounded byO(d/cG(Vv, V̄v) it must hold that

F = O

(
cGv(Vv)

cG(Vv, V̄v)

)

which is the case because of Definition 3.8. In this case, the congestion produced by our routing
strategy for stagei is bounded byO(C

(s,t)
OPT), which completes the proof. ut

One may ask whether good decompositions only exist for specific classes of graphs or whether any
graph is decomposable (when allowing some additional polylogarithmic factor in our condition for the
flow number in Definition 3.8). Surprisingly, R̈acke has shown that this is always possible, implying
the following result:

Theorem 3.10 ([3]) For every network with non-negative capacities there is an oblivious routing
strategy that achieves for every multicommodity flow problemP a congestion ofO(CP

OPT ·polylog(n)).

Hence, oblivious routing is a surprisingly powerful concept.

References

[1] A. Borodin and J. Hopcroft. Routing, merging, and sorting on parallel models of computation.Journal of
Computer and System Sciences, 30:130–145, 1985.

[2] B. Maggs, F. M. auf der Heide, B. V̈ocking, and M. Westermann. Exploiting locality for networks of limited
bandwidth. InProc. of the 38th IEEE Symp. on Foundations of Computer Science (FOCS), pages 284–293,
1997.

[3] H. Räcke. Minimizing congestion in general networks. InProc. of the 43rd IEEE Symp. on Foundations of
Computer Science (FOCS), 2002.

[4] L. Valiant. A scheme for fast parallel communication.SIAM Journal on Computing, 2(11):350–361, 1982.

11

