
4 Scheduling

So far, we mostly looked atstatic routing problems such as BMFPs, i.e. all demands (or packets)
are given from the beginning and no new demands (or packets) arrive during the routing. In the real
world, however, packets are usually injected at the nodes in a continuous fashion. Models that take
this into account are calleddynamic routing models, as opposed to thestatic routing modelswe mostly
considered before. These models can be usually characterized as eitherstochasticor adversarial. In
stochastic models, the injection of packets is modelled with the help of stochastic processes, whereas
in the adversarial model it is assumed that an adversary controls the injection of new packets [2]. In
this section, we restrict ourselves to considering the following variant of the adversarial model, which
is due to [1].

4.1 The adversarial injection model

In this model we have an adversary that is allowed to demand network bandwidth up to some specified
limit. That is, it is allowed to choose any node at any time step to inject a new packet and it is allowed
to select any path for the injected packet as long as the load of the edges does not exceed a certain
limit. More formally, for anyw, λ > 0, an adversary is called a(w, λ)-bounded adversaryif for
all edgese and all time intervalsI of lengthw, it injects no more thanλ · w packets duringI that
contain edgee in their routing paths.λ is called theinjection rateandw is called theburstinessof
the adversary. We demand that the adversary has to tell the system the paths it selects. Thus, we are
left with solving adynamic scheduling problem. An algorithm for this problem is called ascheduling
protocol. A scheduling protocol is calledstablefor someλ and some networkG if for any injection
rate of at mostλ and any paths selected for the packets inG the (expected) worst-case routing time of
a packet (i.e. the time it spends in the system) does not grow unboundedly with time. Since an edge
can transport at most one packet per step,λ can be at most 1. A protocol that is stable for any network
and anyλ < 1 is calleduniversally stable. We will show that there are both universally stable and
non-universally stable protocols.

4.2 Queueing disciplines

Usually, every node has a packet queue for every outgoing edge. Hence, the simplest form of a
scheduling protocol are protocols in which we just define a rule about how to rank packets in a queue
so that we know which packet to send out next along an edge. Elementary queueing disciplines are:

• FIFO (first in first out): gives preference to the packet that was the first to arrive at the queue
(among those that are still in the queue).

• NTO (nearest to origin): gives preference to the packet that has traveled the smallest amount of
edges so far. Ties are broken arbitrarily.

• FTG (furthest to go): gives preference to the packet that has the largest number of edges to go.
Ties are broken arbitrarily.

• NTG (nearest to go): gives preference to the packet that has the smallest number of edges to go.
Ties are broken arbitrarily.

1

• SIS (shortest in system): gives preference to the youngest packet.

• LIS (longest in system): gives preference to the oldest packet.

Due to its simplicity, FIFO is the most widely used scheduling protocol in practice.

4.3 Universal stability of SIS

The SIS protocol always gives preference to the youngest packet. Ties may be broken arbitrarily. For
this protocol we can prove the following amazing result.

Theorem 4.1 SIS is universally stable.

Proof. Let 0 < ε < 1 be chosen such thatλ = 1 − ε. Suppose that there is a packetP that
requires more than

∑d
i=1(w + 1)/εi steps to traverse a path of lengthd. In this case there must be

an i ∈ {1, . . . , d} for which P was delayed for at least(w + 1)/εi steps at theith edge of its path.
Consider the minimali for which this holds. Lete be the corresponding edge onP ’s path. Then the
time differenceT between the injection ofP and the time at whichP had to wait for the(w + 1)/εith
time ate is at most

i∑

j=1

(w + 1)/εj =
w + 1

ε
· (1/ε)i − 1

(1/ε)− 1
= (w + 1) · (1/ε)i − 1

1− ε
.

Sinceλ = 1− ε, at most

(1− ε)T + w = (w + 1) ·
(
(1/ε)i − 1

)
+ w < (w + 1)/εi

packets can be injected duringT time steps that intend to crosse. Only these packets can be preferred
againstP ate. However, since our assumption requiresP to be delayed by at least(w + 1)/εi packets
ate, we arrive at a contradiction Thus, the delay of a packet following a path of lengthd can be at most∑d

i=1(w + 1)/εi, and therefore SIS must be stable. ut

4.4 Universal stability of LIS

In contrast to SIS, the LIS protocol always gives preference to the oldest packet. Also LIS is stable.

Theorem 4.2 LIS is universally stable.

Proof. Let λ = 1− ε and letD be the maximal length of a path that can be chosen by the adversary.
Suppose that there is a packet that requires more than

d−1∑

j=0

(w + 1)/εD−j

steps to traverse a path of lengthd. Let P be the first packet with this property and let itsith edge be
the first edge at which this property is fulfilled. Lete be theith edge onP ’s path, and lett be chosen
such that at the beginning of time stept P has an age of

∑i−2
j=0(w+1)/εD−j steps. ThenP was delayed

2

at e for at least(w + 1)/εD−(i−1) steps followingt. Since, according to our assumptions, the maximal
age of any packet before time stept+(w+1)/εD−(i−1) was at most

∑D−1
j=0 (w+1)/εD−j, the difference

T between this age and the age ofP at time stept is at most

D−1∑

j=0

(w + 1)/εD−j −
i−2∑

j=0

(w + 1)/εD−j =
D−1∑

j=i−1

(w + 1)/εD−j =
D−i+1∑

j=1

(w + 1)/εj

=
w + 1

ε
· (1/ε)D−i+1 − 1

(1/ε)− 1

= (w + 1) · (1/ε)D−i+1 − 1

1− ε
.

Sinceλ = 1− ε, at most

(1− ε)T + w = (w + 1)
(
(1/ε)D−i+1 − 1

)
+ w < (w + 1)/εD−i+1

packets can be injected from time stept − ∑D−1
j=0 (w + 1)/εD−j to the injection time ofP that intend

to crosse. Since these are the only packets that can delayP at e, and our assumptions requireP to be
delayed by at least(w +1)/εD−i+1 packets, we arrive at a contradiction. Hence, LIS must be stable.ut

4.5 Instability of FIFO

The FIFO protocol always gives preference to the packet that was the first to arrive at a node. The next
result demonstrates that FIFO is not universally stable.

Theorem 4.3 For λ ≥ 0.85 there is a network and an adversary that causes FIFO to be unstable.

Proof. The adversary uses the network shown in Figure 1. It is not difficult to check that this network
can be embedded in a grid and a 3-dimensional hypercube. Thus, it is possible for our counterexample
to happen in important standard networks.

f’1

f1

f’0

f0

e

e 0

1

Figure 1: The counterexample for FIFO.

We divide the injection strategy of the adversary into several phases. Our induction hypothesis will
be that at the beginning of phasej there are at leasts+ j packets in the buffer ofei that intend to cross
the edgesei andfi, wherei = j mod2 ands is a sufficiently large constant.

In phase 1 we have to inject packets in such a way that at the end of this phase there arem = s + 2
packets in the buffer ofe0 that have a remaining path of(e0f0). This can be achieved by attaching a
set ofm lines of nodes to the starting node ofe0, where linei has a length ofi/λ. An injection rate of

3

λ allowsm packets to be injected at the endpoints of the lines, one per endpoint, so that allm packets
reache0 at the same time. This ensures the induction hypothesis for phase 2.

We consider now an arbitrary even phasej. The odd phases work in the same way. We will show
that if at the beginning of phasej the buffer ofe0 contains a setM0 of m = s + j packets with
remaining path(e0f0), then at the beginning of phasej + 1 there will be at leastm + 1 packets in the
buffer ofe1 that have a remaining path of(e1f1).

In the following we describe the injection strategy of the adversary for phasej. To simplify the
proof, we will avoid dealing with floors and ceilings. Ifm is sufficiently large, then their effects can
be neglected. Phasej consists of 3 stages.

Stage 1 consists ofm steps. During this stage we inject a setM1 of λm packets with path
(e0f

′
0e1f1). These packets are blocked by the packets inM0. Furthermore, we injectλm packets

with path(f0). These packets ensure that at the end of stage 1 at leastλm packets with remaining path
(f0) are still in the buffer off0.

Stage 2 consists ofλm steps. During this stage we inject a setM2 of λ2m packets with path
(f0e1f1). These are blocked by the packets that are already in the buffer off0. Furthermore, we inject
λ2m packets with path(f ′0). These mix with the packets inM1. Every1/λ steps we have in addition
to 1/λ packets fromM1 that reach the buffer off ′0 one packet with path(f ′0). This has the effect that
every1 + 1/λ steps1/λ packets fromM1 passf ′0, which reduces the number of packets in the buffer
of f ′0 after stage 2 to

λm− λm

1 + 1/λ
· 1

λ
= λm− λm

λ + 1
=

λ2m

λ + 1
.

Stage 3 consists ofλ2m steps. During this stage, the packets inM1 andM2 move forward and
mix in the buffer ofe1. Furthermore,λ3m packets are injected with path(e1f1). Sinceλ2m packets
traversee1, the number of packets in the buffer ofe1 with remaining path(e1f1) after stage 3 is equal
to λ3m + λ2m/(λ + 1).

This ends phasej. Since forλ ≥ 0.85 we have thatλ3 +λ2/(λ+1) > 1, we arrive at the induction
hypothesis for phasej + 1. ut

Although FIFO cannot handle well adversarial traffic, it was shown by Bramson that it is actually
universally stable for stochastic traffic [3]. Since FIFO queues are so much easier to build than other
queues and Internet traffic is of somewhat stochastic nature, this explains why there has been no need
so far to choose queueing disciplines other than FIFO in Internet routers.

4.6 Routing in leveled networks

The stability results for SIS and LIS above demonstrate that the worst-case delay of a packet is finite,
but it may be very large. In this section we demonstrate that in certain situations much better delay
bounds can be shown.

Consider using the LIS rule in leveled networks. We assume that every packet has a rank that is
determined by its birth date plus some small offset< 1 that gives the packets a strict ordering (so that
we never run into a tie). When using the adversary in a leveled network, we only allow the adversary
to inject paths that go from lower to higher levels, i.e. for every edgee on such a path,e must go from
some node in levelk to some node in levelk + 1.

4

Theorem 4.4 Let L denote the depth of the leveled network. For any(w, λ)-bounded adversary with
λ ≤ 1, LIS is stable, and every packet reaches its destination in at most(1 + λw)L time steps.

Proof. Suppose on the contrary that there is a packetp0 that needs more than(1 + λw)L time steps
to reach its destination. We will use a delay sequence argument to show that this is not possible. First,
we follow p0 backwards in time from the point where it reached its destination until it was delayed
by some packetp1. We then followp1 backwards in time until is was delayed by some packetp2,
and so on, until we get to a packetps that had no prior delays. The pathq recorded in this process is
called adelay pathand must have a length of at mostL, because we only allow the adversary to inject
paths with edges from levelk to k + 1 for somek. Since LIS is used, we also know that for every
i ∈ {1, . . . , s}, pi must be at least as old aspi−1. Hence, the time spanned by the delay sequence must
be more than

(birth(p0)− birth(ps)) + (1 + λw)L ,

and the total amount of delay events must therefore be more than

(birth(p0)− birth(ps)) + λwL .

Furthermore, for every edgee along the delay pathq we can associate an intervalIe containing the
birth dates of all packets recorded in the delay sequence ate. Since the birth dates of the packets are
strictly decreasing, theIe’s can be chosen so that

• ∑
e∈q |Ie| ≤ birth(p0)− birth(ps), where

• for every edgee at which no delay was recorded,Ie = [r, r] wherer is the rank of the packet
that passed throughe, and

• for any two edgese ande′ on the delay pathq, Ie ∩ I ′e = ∅.
On the other hand, the number of packets that can be injected duringIe with a path throughe is at
mostλ(|Ie|+ w). Hence, the number of packets that can be injected during the time span of the delay
sequence,

⋃
e Ie, is at most

∑
e∈q

λ(|Ie|+ w) ≤ ∑
e∈q

|Ie|+ λwL ≤ (birth(p0)− birth(ps)) + λwL ,

which contradicts the fact that there have to be more than(birth(p0)− birth(ps)) +λwL delays along
the delay path. ut

Though LIS works fine if there is always sufficient space for packet buffering, it can run into
problems if this is not the case. Here, theenforced longest in system(or ELIS) protocol can be used.

Enforced longest in system

ELIS is a variant of LIS that was developed for leveled graphs to enforce that packets arrive at their
destinations in a strictly ordered way based on their age. This can be important, for example, for
consistent data updates.

We assume that every node has a queue of sizeq for everyincomingedge. The packets are assigned
ranks in order to decide which packet is preferred in case of contention. For each packetp, letbirth(p)

5

denote the time step at whichp was injected. The rank ofp is set tobirth(p) plus some small valuex
from the interval[0, κ), for someκ < 1, wherex is chosen such that each packet has its own, unique
rank (e.g., by using the identification number of the process that injected the packet). Packets with
smaller ranks, i.e., older packets, are always preferred against packets with higher rank, i.e., younger
packets. Special ghost packets help the algorithm to maintain the following invariant:

A packet is routed along an edge only after all the other packets with lower ranks that must pass
through the edge have done so.

Suppose that we have a network withL+1 levels, numbered from 0 toL. For every packet injected
into the system, the adversary has to provide a path that starts at some source node in leveli, ends at
some destination in levelj > i, and that only uses edges that go from some levelk to some levelk+1.
In order to give time for initializing the network, we assume that packet injections on levelk do not
start before time stepk.

The following algorithm is executed for each outgoing linke of a nodev on levelk in each time
stept ≥ k (recall that each edge buffer can hold up toq packets):

• Let r denote the minimum rank of a packet that is stored in one ofv’s buffers and that aims to
pass edgee. If there is no such packet thenr = ∞.

• Let g denote the minimum over all ranks of packets or ghost packets that arrived atv at the
beginning of stept. If there is no such packet (asv is a node without incoming edges, e.g., on
level 0) theng is set tot + κ.

• if r < g then
if the buffer ofe contains less thanq packets at the beginning of stept then

forward the (unique) packet with rankr alonge
else send a ghost packet with rankr alonge

else send a ghost packet with rankg alonge.

Ghost packets are discarded as soon as they are delayed in a step. Thus, they never block the buffer for
following packets. The role of the ghost packets is to enforce the invariant given above. They make
sure that edges in larger levels are always kept informed about which is the largest rank of a packet at
a smaller level that may still want to traverse that edge.

Theorem 4.5 ([4]) LetL denote the depth of the leveled network andq be the size of the edge buffers.
For any(w, λ)-bounded adversary withw ≤ (q − 2)/(2λ) and0 ≤ λ ≤ 1, ELIS is stable, and every
packet reaches its destination in at most(1 + λ · w)L time steps.

4.7 Routing in arbitrary networks

Suppose that we want to route packets efficiently in an arbitrary network. If we make sure that all paths
used by the packets are shortest possible (or short-cut free) paths (as this is the case forx−y-routing in
the mesh), we can use thegrowing rank protocolor GRP to achieve a low delay. The GRP is basically
a combination of LIS and NTO. The initial rank of a packet is equal to its injection time. Every time a
packet crosses an edge, its rank is increased by some parameterσ. For any edge queue in the system,

6

GRP gives preference to the packet with smallest rank. Ties are broken based on the source ID of the
packet (or other unique information).

Using a stochastic injection model (λ represents the average number of packets injected at a step
that traverse an edge, and each injection process at a node injects packets independently from other
processes and other steps), the following result can be shown for the GRP.

Theorem 4.6 ([4]) Suppose all routing paths are shortest paths. Then GRP is stable for any injection
rateλ up to some1− ε with ε = Θ((log σ)/

√
σ). Furthermore, the routing time for any packetp that

has to travel along a routing path of lengthd is O(σ · d), expected, andO(σ · (d + log N)), with high
probability.

References

[1] M. Andrews, B. Awerbuch, A. Ferńandez, J. Kleinberg, T. Leighton, and Z. Liu. Universal stability results
for greedy contention-resolution protocols. InProc. of the 37th IEEE Symp. on Foundations of Computer
Science (FOCS), pages 380–389, 1996.

[2] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Adversarial queueing theory. In
Proc. of the 28th ACM Symp. on Theory of Computing (STOC), pages 376–385, 1996.

[3] M. Bramson. Convergence to equilibria for fluid models of fifo queueing networks.Queueing Systems,
22:5–45, 1996.

[4] C. Scheideler and B. V̈ocking. From static to dynamic routing: Efficient transformations of store-and-
forward protocols. InProc. of the 31st ACM Symp. on Theory of Computing (STOC), pages 215–224, 1999.

7

