4 Scheduling

So far, we mostly looked &atatic routing problems such as BMFPs, i.e. all demands (or packets)
are given from the beginning and no new demands (or packets) arrive during the routing. In the real
world, however, packets are usually injected at the nodes in a continuous fashion. Models that take
this into account are calledi/namic routing mode]ss opposed to th&atic routing modelsve mostly
considered before. These models can be usually characterized aswtiersticor adversarial In
stochastic models, the injection of packets is modelled with the help of stochastic processes, whereas
in the adversarial model it is assumed that an adversary controls the injection of new packets [2]. In
this section, we restrict ourselves to considering the following variant of the adversarial model, which
is due to [1].

4.1 The adversarial injection model

In this model we have an adversary that is allowed to demand network bandwidth up to some specified
limit. That s, it is allowed to choose any node at any time step to inject a new packet and it is allowed
to select any path for the injected packet as long as the load of the edges does not exceed a certai
limit. More formally, for anyw, A\ > 0, an adversary is called @v, A\)-bounded adversarif for

all edgese and all time intervald of lengthw, it injects no more thar - w packets during that

contain edge: in their routing paths.\ is called theinjection rateandw is called theburstinessof

the adversary. We demand that the adversary has to tell the system the paths it selects. Thus, we ar
left with solving adynamic scheduling problemin algorithm for this problem is calledscheduling
protocol A scheduling protocol is callestablefor some) and some network: if for any injection

rate of at mosi and any paths selected for the packet§ithe (expected) worst-case routing time of

a packet (i.e. the time it spends in the system) does not grow unboundedly with time. Since an edge
can transport at most one packet per stegan be at most 1. A protocol that is stable for any network

and any\ < 1 is calleduniversally stable We will show that there are both universally stable and
non-universally stable protocols.

4.2 Queueing disciplines

Usually, every node has a packet queue for every outgoing edge. Hence, the simplest form of a
scheduling protocol are protocols in which we just define a rule about how to rank packets in a queue
so that we know which packet to send out next along an edge. Elementary queueing disciplines are:

e FIFO (first in first out): gives preference to the packet that was the first to arrive at the queue
(among those that are still in the queue).

e NTO (nearest to origin): gives preference to the packet that has traveled the smallest amount of
edges so far. Ties are broken arbitrarily.

e FTG (furthest to go): gives preference to the packet that has the largest number of edges to go.
Ties are broken arbitrarily.

e NTG (nearest to go): gives preference to the packet that has the smallest number of edges to go
Ties are broken arbitrarily.

e SIS (shortest in system): gives preference to the youngest packet.
e LIS (longest in system): gives preference to the oldest packet.

Due to its simplicity, FIFO is the most widely used scheduling protocol in practice.

4.3 Universal stability of SIS

The SIS protocol always gives preference to the youngest packet. Ties may be broken arbitrarily. For
this protocol we can prove the following amazing result.

Theorem 4.1 SIS is universally stable.

Proof. Let0 < ¢ < 1 be chosen such that = 1 — e. Suppose that there is a packetthat
requires more thaix?_, (w + 1)/€' steps to traverse a path of length In this case there must be
ani € {1,...,d} for which P was delayed for at leastv + 1) /¢’ steps at theth edge of its path.
Consider the minimal for which this holds. Let be the corresponding edge éts path. Then the
time differencel’ between the injection aP and the time at whict® had to wait for thgw + 1) /€'th
time ate is at most

: ;w41 (1) -1 (1/e) —1
j;(w+1)/€— c '(1/6)_1—(w+1)-17_6.

Sincel = 1 — ¢, at most

(1—T+w=(w+1) ((1/)) = 1) +w < (w+1)/é

packets can be injected durifigtime steps that intend to crossOnly these packets can be preferred

againstP ate. However, since our assumption requifé$o be delayed by at leaét + 1)/¢* packets

ate, we arrive at a contradiction Thus, the delay of a packet following a path of lelhggth be at most
¢ (w+1)/€, and therefore SIS must be stable. O

4.4 Universal stability of LIS

In contrast to SIS, the LIS protocol always gives preference to the oldest packet. Also LIS is stable.
Theorem 4.2 LIS is universally stable.
Proof. LetA = 1 — e and letD be the maximal length of a path that can be chosen by the adversary.
Suppose that there is a packet that requires more than

d—1 '

> (w+1)/eP

j=0

steps to traverse a path of lengthLet P be the first packet with this property and letits edge be
the first edge at which this property is fulfilled. Lebe theith edge onP's path, and let be chosen
such that at the beginning of time step has an age OI;;%(w +1)/eP~7 steps. Ther® was delayed

2

ate for at least(w + 1) /eP~(~1 steps foIIowingt Since, according to our assumptions, the maximal
age of any packet before time step (w+1) /¢~ was at mos‘E o (w+1)/eP~7, the difference
T between this age and the agefoht time step is at most

2}(w+1)/eD_j—2)(w+l)/eD‘j Z__l(w—i-l)/eD_j: ._Zl (w+1)/é
w1 (1P -1
€ (1/e) - 1
= ey WL

Sincel = 1 — ¢, at most
(-7 +w=(w+1) ((1/6)D_i+1 - 1) +w < (w+1)/eP7!

packets can be injected from time step Zj’?;ol (w + 1)/eP~7 to the injection time of? that intend
to crosse. Since these are the only packets that can delaye, and our assumptions requifeto be
delayed by at leasgtv + 1) /P~ packets, we arrive at a contradiction. Hence, LIS must be stable.

4.5 Instability of FIFO

The FIFO protocol always gives preference to the packet that was the first to arrive at a node. The next
result demonstrates that FIFO is not universally stable.

Theorem 4.3 For A > 0.85 there is a network and an adversary that causes FIFO to be unstable.

Proof. The adversary uses the network shown in Figure 1. It is not difficult to check that this network
can be embedded in a grid and a 3-dimensional hypercube. Thus, it is possible for our counterexample

to happen in important standard networks.

Figure 1. The counterexample for FIFO.

We divide the injection strategy of the adversary into several phases. Our induction hypothesis will
be that at the beginning of phagéhere are at least+ j packets in the buffer of; that intend to cross
the edgesg; and f;, where: = j mod2 ands is a sufficiently large constant.

In phase 1 we have to inject packets in such a way that at the end of this phase there are 2
packets in the buffer of, that have a remaining path ¢, f;). This can be achieved by attaching a
set ofm lines of nodes to the starting nodef where line; has a length of/A. An injection rate of

3

A allowsm packets to be injected at the endpoints of the lines, one per endpoint, so thagtatkets
reache, at the same time. This ensures the induction hypothesis for phase 2.

We consider now an arbitrary even phas&he odd phases work in the same way. We will show
that if at the beginning of phasgthe buffer ofe, contains a sef\/, of m = s + j packets with
remaining pathe, fy), then at the beginning of phaget- 1 there will be at least: + 1 packets in the
buffer of e; that have a remaining path ¢f; f1).

In the following we describe the injection strategy of the adversary for pha3e simplify the
proof, we will avoid dealing with floors and ceilings. /i is sufficiently large, then their effects can
be neglected. Phageconsists of 3 stages.

Stage 1 consists afr steps. During this stage we inject a set of Am packets with path
(eofleirfi). These packets are blocked by the packetd/in Furthermore, we injechm packets
with path(fy). These packets ensure that at the end of stage 1 atlegsackets with remaining path
(fo) are still in the buffer offj.

Stage 2 consists ofm steps. During this stage we inject a 9¢t of *>m packets with path
(foe1f1). These are blocked by the packets that are already in the buffegr Blirthermore, we inject
A*m packets with patlif;). These mix with the packets il/;. Every1/\ steps we have in addition
to 1/ packets from\/; that reach the buffer of) one packet with patlf;). This has the effect that
everyl + 1/ stepsl/\ packets from\/; passf(, which reduces the number of packets in the buffer
of f after stage 2 to

xmo 1 m A2m
— = =Am — = .
I+1/X A A+1 A+1

Stage 3 consists of?m steps. During this stage, the packetslih and M/, move forward and
mix in the buffer ofe;. Furthermore)\3m packets are injected with path, f;). SinceA\?m packets
traversee;, the number of packets in the buffer @fwith remaining pathe, f;) after stage 3 is equal
to *m + XN2m/(\ + 1).

This ends phasg Since for\ > 0.85 we have that® + \?/(A+1) > 1, we arrive at the induction
hypothesis for phasg+ 1. O

Am

Although FIFO cannot handle well adversarial traffic, it was shown by Bramson that it is actually
universally stable for stochastic traffic [3]. Since FIFO queues are so much easier to build than other
queues and Internet traffic is of somewhat stochastic nature, this explains why there has been no nee
so far to choose queueing disciplines other than FIFO in Internet routers.

4.6 Routing in leveled networks

The stability results for SIS and LIS above demonstrate that the worst-case delay of a packet is finite,
but it may be very large. In this section we demonstrate that in certain situations much better delay
bounds can be shown.

Consider using the LIS rule in leveled networks. We assume that every packet has a rank that is
determined by its birth date plus some small offset that gives the packets a strict ordering (so that
we never run into a tie). When using the adversary in a leveled network, we only allow the adversary
to inject paths that go from lower to higher levels, i.e. for every edge such a path; must go from
some node in levet to some node in levet + 1.

Theorem 4.4 Let L denote the depth of the leveled network. For &my)\)-bounded adversary with
A < 1, LIS is stable, and every packet reaches its destination in at fhest\w) L time steps.

Proof. Suppose on the contrary that there is a papkebat needs more thaii + \w)L time steps
to reach its destination. We will use a delay sequence argument to show that this is not possible. First,
we follow p, backwards in time from the point where it reached its destination until it was delayed
by some packep,. We then followp, backwards in time until is was delayed by some pagket
and so on, until we get to a packetthat had no prior delays. The pajlrecorded in this process is
called adelay pathand must have a length of at mdstbecause we only allow the adversary to inject
paths with edges from levéi to k£ + 1 for somek. Since LIS is used, we also know that for every
ie{l,...,s}, p; must be at least as old as ;. Hence, the time spanned by the delay sequence must
be more than

(birth(pg) — birth(ps)) + (1 + Aw)L ,

and the total amount of delay events must therefore be more than
(birth(pg) — birth(ps)) + AwL .

Furthermore, for every edgealong the delay path we can associate an interval containing the
birth dates of all packets recorded in the delay sequeneeSince the birth dates of the packets are
strictly decreasing, thé.’s can be chosen so that

® >, L] < birth(py) — birth(p,), where

e for every edge: at which no delay was recordefl, = [r, | wherer is the rank of the packet
that passed through and

e for any two edges ande’ on the delay path, 7. N I = ().

On the other hand, the number of packets that can be injected digrinigh a path througte is at
mostA(|I.| + w). Hence, the number of packets that can be injected during the time span of the delay
sequencey, I, is at most

SSNL| 4 w) < S| I| + AwL < (birth(p) — birth(p,)) + Awl |

ecq ecq

which contradicts the fact that there have to be more thanh(py) — birth(ps)) + AwL delays along
the delay path. O

Though LIS works fine if there is always sufficient space for packet buffering, it can run into
problems if this is not the case. Here, #rdorced longest in systefor ELIS) protocol can be used.

Enforced longest in system

ELIS is a variant of LIS that was developed for leveled graphs to enforce that packets arrive at their
destinations in a strictly ordered way based on their age. This can be important, for example, for
consistent data updates.

We assume that every node has a queue ofdiaeeveryincomingedge. The packets are assigned
ranks in order to decide which packet is preferred in case of contention. For eachpdekeitth(p)

5

denote the time step at whighwas injected. The rank gfis set tobirth(p) plus some small value

from the interval0, k), for somex < 1, wherex is chosen such that each packet has its own, unique
rank (e.g., by using the identification number of the process that injected the packet). Packets with
smaller ranks, i.e., older packets, are always preferred against packets with higher rank, i.e., younger
packets. Special ghost packets help the algorithm to maintain the following invariant:

A packet is routed along an edge only after all the other packets with lower ranks that must pass
through the edge have done so.

Suppose that we have a network with-1 levels, numbered from O tb. For every packet injected
into the system, the adversary has to provide a path that starts at some source node,iehelseht
some destination in levgl > 4, and that only uses edges that go from some levelsome levek + 1.
In order to give time for initializing the network, we assume that packet injections onAadelnot
start before time step.

The following algorithm is executed for each outgoing linkf a nodev on levelk in each time
stept > k (recall that each edge buffer can hold ugytoackets):

e Letr denote the minimum rank of a packet that is stored in ongésbuffers and that aims to
pass edge. If there is no such packet then= oco.

e Let g denote the minimum over all ranks of packets or ghost packets that arrivedtahe
beginning of step. If there is no such packet (asis a nhode without incoming edges, e.g., on
level 0) theny is set tot + k.

e if r < gthen
if the buffer ofe contains less thappackets at the beginning of stefhen
forward the (unique) packet with rankalonge
else send a ghost packet with ran&longe
else send a ghost packet with rapklonge.

Ghost packets are discarded as soon as they are delayed in a step. Thus, they never block the buffer fc
following packets. The role of the ghost packets is to enforce the invariant given above. They make
sure that edges in larger levels are always kept informed about which is the largest rank of a packet at
a smaller level that may still want to traverse that edge.

Theorem 4.5 ([4]) Let L denote the depth of the leveled network arix the size of the edge buffers.
For any (w, \)-bounded adversary witlh < (¢ — 2)/(2X) and0 < X < 1, ELIS is stable, and every
packet reaches its destination in at most- \ - w) L time steps.

4.7 Routing in arbitrary networks

Suppose that we want to route packets efficiently in an arbitrary network. If we make sure that all paths
used by the packets are shortest possible (or short-cut free) paths (as this is the.caggefouting in

the mesh), we can use thewing rank protocobr GRP to achieve a low delay. The GRP is basically

a combination of LIS and NTO. The initial rank of a packet is equal to its injection time. Every time a
packet crosses an edge, its rank is increased by some paramEtarany edge queue in the system,

GRP gives preference to the packet with smallest rank. Ties are broken based on the source ID of the
packet (or other unique information).

Using a stochastic injection model (epresents the average number of packets injected at a step
that traverse an edge, and each injection process at a node injects packets independently from othe
processes and other steps), the following result can be shown for the GRP.

Theorem 4.6 ([4]) Suppose all routing paths are shortest paths. Then GRP is stable for any injection
rate A up to somd — e with e = ©((log o) /+/o). Furthermore, the routing time for any packethat

has to travel along a routing path of lengthis O(o - d), expected, and(o - (d + log N)), with high
probability.

References

[1] M. Andrews, B. Awerbuch, A. Feandez, J. Kleinberg, T. Leighton, and Z. Liu. Universal stability results
for greedy contention-resolution protocols. Rroc. of the 37th IEEE Symp. on Foundations of Computer
Science (FOCSpages 380-389, 1996.

[2] A. Borodin, J. Kleinberg, P. Raghavan, M. Sudan, and D. P. Williamson. Adversarial queueing theory. In
Proc. of the 28th ACM Symp. on Theory of Computing (STP&)es 376-385, 1996.

[3] M. Bramson. Convergence to equilibria for fluid models of fifo queueing netwof«seueing Systems
22:5-45, 1996.

[4] C. Scheideler and B. &king. From static to dynamic routing: Efficient transformations of store-and-
forward protocols. IrProc. of the 31st ACM Symp. on Theory of Computing (ST@&)es 215-224, 1999.

