
5 Distributed data management I – Hashing

There are two major approaches for the management of data in distributed systems: hashing and
caching. Thehashingapproach tries to minimize the use of communication hardware by distributing
data randomly among the given processors, which helps to avoid hot spots, and thecachingapproach
tries to minimize the use of communication hardware by keeping data as close to the requesting pro-
cessors as possible. In this section, we will concentrate on the hashing approach.

5.1 Static hashing

The basic idea behind hashing is to use a compact function (thehash function) in order to map some
spaceU onto some spaceV . Hashing is mostly used in the context of resource management. Consider,
for example, the problem of distributing data with addresses in some spaceU = {1, . . . , M} evenly
amongn storage units (also callednodesin the following). In the static case we assume thatn is
fixed and the nodes are numbered from 1 ton. If the whole address spaceU is occupied by data
items, it is easy to achieve an even distribution of the data among the nodes: nodei gets all dataj
with (j modn) + 1 = i. However, ifU is sparsely populated, and in addition the data allocation in
U changes over time, it is more difficult to keep the data evenly distributed among the nodes. In this
case, random hash functions can help.

Suppose that we have a random hash function that assigns every element inU to a node in
{1, . . . , n} chosen uniformly at random, i.e., for everyx ∈ U , every node is chosen with probabil-
ity 1/n. Then for any setS ⊆ U , the expected number of elements inS that are assigned to nodei is
|S|/n for everyi ∈ {1, . . . , n}. In addition to this, the following result can be shown:

Theorem 5.1 For any setS ⊆ U of sizem, the maximum number of elements inS placed in a single
node when using a random hash function is at most

m

n
+ O

(√
(m/n) log n +

log n

log log n

)

with high probability.

One can significantly lower the deviation from an optimal distribution ofm/n data items per node
by using a simple trick:

Suppose the data items arrive one by one and that instead of using a single random hash function,
we use two independent random hash functionsh1 andh2. For each data itemx, we check the current
number of data items in the nodesh1(x) andh2(x) and placex in the least loaded of them. (Ties are
broken arbitrarily.) This rule is also calledminimum rule. It has the following performance.

Theorem 5.2 ([5]) For any setS ⊆ U of sizem, the maximum number of elements inS placed in a
single node when using the minimum rule with two independent, random hash functions is at most

m

n
+ O(log log n) .

Hence, random hashing techniques allow to distribute any subset inU extremely evenly among the
nodes. If we allow data items to be moved after they have been placed, an even better distribution can
be achieved when using the strategy in Figure 1.

1

pick two random nodesv1 andv2

if there is a data item placed inv1 with alternative location inv2 then
pick any data itemx that is placed inv1 with alternative locationv2

placex into the least loaded node (amongv1 andv2)
if there is a tie (i.e.v1 withoutx has the same load asv2) then

placex into a randomly chosen of the two nodes

Figure 1: The self-balancing scheme.

Theorem 5.3 ([3]) For any setS ⊆ U of sizem it holds that if the self-balancing scheme is run
sufficiently long, then the maximum load of a node will eventually converge to at mostdm/ne+1, with
high probability.

Hence, two random hash functions can in principle distribute any subset ofU almost perfectly
among the nodes. Hash functions that have near-random qualities in practice are, for example, cryp-
tographic hash functions such as SHA-1. So static hashing (i.e. the number of nodes is fixed) works
fine. But what can we do if the number of nodes changes over the time? In this case we needdynamic
hashing techniques.

5.2 Dynamic hashing

In a distributed system the set of available nodes may change over time. New nodes may join or old
nodes may leave the system. Thus, a hashing strategy is needed that can adjust efficiently to a changing
set of nodes. The naive approach to simply use a new random hash function each time the set of nodes
changes is certainly not an efficient approach, because it would mean to replace virtually all the data.
We will show that much better strategies exist for this, but first we have to specify the parameters we
want to use to measure the quality of dynamic hashing approaches.

Let {1, . . . , N} be the set of all identification numbers a node may have and let{1, . . . , M} be the
set of all possible addresses a data item can occupy. Suppose that the current number of data items in
the system ism ≤ M and that the current number of nodes in the system isn ≤ N . We will often
assume for simplicity that the data and the nodes are numbered in a consecutive way starting with 1
(but any numbering that gives a unique number to each datum and node would work for our strategies).
Let ci be the currentcapacity of nodei. Then(c1, . . . , cn) is the currentcapacity distribution of the
system. We demand thatci ∈ [0, 1] for everyi and that

∑n
i=1 ci = 1. That is, eachci represents the

capacity of nodei relative to the whole capacity of the system. (In reality, the capacityci of a node
i may be based on its storage capacity, its bandwidth, its computational power, or a mixture of theses
parameters.) Our goal is to make sure that every nodei with capacityci hasci ·m of the data.

The system may change now in a way that the set of data items, the set of available nodes, or the
capacities of the nodes change. In this case, a dynamic hashing scheme is needed that fulfills several
criteria:

• Faithfulness: A scheme is calledfaithful if the expected number of data items it places at node
i is betweenb(1 − ε)ci ·mc andd(1 + ε)ci ·me for all i, whereε > 0 can be made arbitrarily
small.

2

• Time Efficiency: A scheme is calledtime-efficientif it can compute the position of a data item
in a short amount of time.

• Compactness:We call a schemecompactif the amount of information the scheme requires to
compute the position of a data item is small (in particular, it should only depend onN andm in
a logarithmic way).

• Adaptivity: We call a faithful schemeadaptiveif in the case that there is any change in the set
of data items, nodes, or the capacities of the system, it can redistribute data items to get back
to a faithful distribution. To measure the adaptivity of a placement scheme, we use competitive
analysis. For any sequence of operationsσ that represent changes in the system, we intend
to compare the number of (re-)placements of data performed by the given scheme with the
number of (re-)placements of data performed by an optimal strategy that ensures that, after every
operation, the data distribution among the nodes is perfectly faithful (i.e. nodei has exactlycim
data items, up to±1). A placement strategy will be calledc-competitiveif for any sequence of
changesσ it requires the (re-)placement of (an expected number of) at mostc times the number
of data items an optimal adaptive and perfectly faithful strategy would need.

To clarify the last definition, notice that when the capacity distribution in the system changes from
(c1, ..., cn) to (c′1, ..., c

′
n), an optimal, perfectly faithful strategy would need

∑

i:ci>c′i

(ci − c′i) ·m

replacements of data items. Thus, for example, if the capacity distribution changes from(1/2, 1/2, 0)
to (0, 1/2, 1/2) (node 1 leaves and node 3 enters the system), ideally only a fraction of1/2 of the data
would have to be moved.

5.3 Dynamic hashing for uniform systems

In this section we present two strategies that work well for nodes of uniform capacity (i.e., every node
has the same capacity): the consistent hashing strategy and the cut-and-paste strategy. In the uniform
case, the only changes in the system we have to consider are that a data item or node leaves or enters
the system.

The consistent hashing strategy

The consistent hashing strategy was proposed by Karger et al. [4] and works as follows:
Suppose that we have a random hash functionf and a set of independent, random hash functions

g1, . . . , gk, wherek may depend onn. The functionf : {1, . . . , M} → [0, 1) maps the data uniformly
at random to real numbers in the interval[0, 1) and each functiongi : {1, . . . , N} → [0, 1) maps the
nodes uniformly at random to real numbers in the interval[0, 1). Item i is assigned to the nodej
representing its closest successor in[0, 1), i.e. itemi is mapped to the nodej with minimumgk(j) so
thatf(i) ≤ gk(j), treating[0, 1) here as a ring (see also Figure 2).

Theorem 5.4 ([4]) Consistent hashing

3

01

Figure 2: The consistent hashing strategy.

1. is perfectly faithful,

2. only requires a constant expected number of time steps (andO(log n) in the worst case) to
compute the location of a data item when using a suitable algorithm,

3. needsΘ(n log2 N) memory (i.e.,k = Θ(log N)) to make sure that the number of data items
stored in a node deviates only by a constant factor from the ideal distribution with high proba-
bility, and

4. is 2-competitive concerning the amount of data that has to be moved if the set of nodes changes.
Note that no movements (apart from insertions of new or deletions of old data) are required if
the set of data changes.

One might think that this strategy can be easily extended to cover the heterogeneous case by al-
lowing nodes with more capacity to have more random points in[0, 1). However, this would require
Ω(min[cmax/cmin,m]) points to be faithful, wherecmax is the maximum capacity andcmin is the min-
imum capacity of a node. Thus, in the worst case the number of points a single node may have to
use could be as much asΘ(m), violating severely our conditions on the space complexity. In fact,
restricting the total number of points to something strictly belowm cannot guarantee faithfulness in
general (just consider two bins with capacitiesc/m and(m− c)/m for some constantc > 1).

The cut-and-paste strategy

The cut-and-paste strategy consists of two stages and is based on a fixed, random hash functionf :
{1, . . . , M} → [0, 1). Sincef is a random function, it guarantees that for any subset of[0, 1) of size
s, the fraction of the data that is assigned to a number in this subset is equal tos. Thus, it only has to
be ensured that the interval[0, 1) is evenly distributed among the nodes, i.e. every node gets a part of
[0, 1) of size1/n (see Figure 3).

For the mapping of the[0, 1) range to the nodes, a so-calledcut-and-paste functionis used. This
function will make sure that every node has the same share of the[0, 1)-interval. To simplify the
description, givenn nodes, we will denote the set of ranges assigned to nodei by [0, 1/n)i. In the

4

nf - fn

1/n

0

.
1/(n+1)

1 2 3 4 n n+1

1

n

Figure 3: The cut-and-paste strategy.

case of a step-wise increase in the number of nodes from 1 toN , the cut-and-paste function works as
follows:

At the beginning, we assign the whole range[0, 1) to node 1. Theheightof a data itemx in this
case is defined asf(x). For the change fromn to n+1 processors,n ∈ {1, . . . , N − 1}, we cut off the
range[1/(n + 1), 1/n)i from every nodei and concatenate these intervals to a range[0, 1/(n + 1))n+1

for the new noden+1. What this actually means for the movement of the data is described in Figure 4.

Replacement fromn to n + 1 nodes:

for every nodei ∈ {1, . . . , n}:
for all data itemsx ati with current heighth ≥ 1/(n+1):

movex to noden + 1
the new height ofx is h− 1

n+1
+ n−i

n(n+1)

Figure 4: The replacement scheme for a new node.

If one node is lost, say nodei, then we reverse the replacement scheme in a way that first noden
moves all of its data back to the nodes 1 ton− 1 and then takes over the role of nodei (i.e., it obtains
the identification numberi and gets all data nodei is required to have). This ensures the following
result.

Theorem 5.5 ([1]) The cut-and-paste strategy is perfectly faithful and 2-competitive concerning the
amount of data that have to be moved if the node set changes.

Furthermore, the cut-and-paste strategy guarantees the following invariant:

Invariant: In anysituation in which we haven nodes, the data items are distributed among them as
this would be if we had a step-wise extension from 1 ton nodes.

In order to compute the actual position of a data item, it therefore suffices to replay the cut-and-
paste scheme for a step-wise increase from 1 ton nodes. Fortunately, we do not have to go through all

5

n steps to compute the current position of a data item, but we only have to consider those steps that
require the data item to be replaced. Using this strategy, we obtain the algorithm given in Figure 5 to
compute the position of a data item.

Input: addressc ∈ {1, . . . , M}
Output: node numberd ∈ {1, . . . , n}
Algorithm:
setd = 1 andx = f(c)
while x ≥ 1/n do

sety = d1/xe
setx = x− 1/y + (y − 1− d)/(y(y − 1))
setd = y

Figure 5: The computation of the position of a data item.

It is not difficult to show that for any numberd of a node in which a data item is currently stored,
the second next node at which it will be stored is at least2d. Hence, the number of rounds needed for
the computation of the position of a data item isO(log n). Thus, we obtain the following result.

Theorem 5.6 ([1]) The cut-and-paste strategy

• can compute the location of a data item inO(log n) time steps and

• needsO(n log N) memory to store the numbering for the nodes.

5.4 Dynamic hashing for non-uniform systems

Finally, we consider the case that we have an arbitrary capacity distribution. Also here we present two
alternative strategies: SHARE and SIEVE. The results in this section are based on work in [2].

The SHARE strategy

SHARE uses as a subroutine the consistent hashing strategy presented earlier. It is based on two hash
functions (in addition to the hash functions that are used by the consistent hashing strategy): a hash
functionh : {1, . . . ,M} → [0, 1) that maps the data items uniformly at random to real numbers in the
interval [0, 1), and a hash functiong : {1, . . . , N} → [0, 1) that maps starting points of intervals for
the nodes uniformly at random to real numbers in[0, 1). SHARE works in the following way:

Suppose that the capacities for then given nodes are represented by(c1, . . . , cn) ∈ [0, 1)n. Every
nodei is given an intervalIi of lengths · ci, for some fixedstretch factors, that reaches fromg(i) to
(g(i) + s · ci) mod1, where[0, 1) is viewed as a ring. Ifs · ci ≥ 1, then this means that the interval is
wrappedds · cie times around[0, 1). To simplify the presentation, we assume that each such interval
consists ofds · cie intervalsIi′ with different numbersi′ (that are identified withi), wherebs · cic of
them are of length 1.

For everyx ∈ [0, 1), let Cx = {i : x ∈ Ii} andcx = |Cx|, which is called thecontentionat point
x. Since the total number of endpoints of all intervalsIi is at most2(n + s), [0, 1) has to be cut into at

6

most2(n + s) framesFj ⊆ [0, 1) so that for each frameFj, Cx is the same for everyx ∈ Fj. This is
important to ensure that the data structures for SHARE have a low space complexity. The computation
of the position of a data itemd is now simply done by calling the consistent hashing strategy with item
d and node setCh(d) (see Figure 6).

Algorithm SHARE(b):
Input: addressd of a data item and a data structure

containing all intervalsIi

Output: number of node that storesd

Phase 1:query data structure for pointh(d)
to derive the node setCh(d)

Phase 2:x = CONSISTENT-HASHING(d, Ch(d))
return x

Figure 6: The SHARE algorithm.

For this strategy to work correctly, we require that every pointx ∈ [0, 1) be covered by at least one
intervalIi with high probability. This can be ensured ifs = Θ(log N). Under the assumption that the
consistent hashing strategy usesk hash functions for the nodes, we arrive at the following result:

Theorem 5.7 ([2]) If s = Ω(log N) andk = Ω(log N), the SHARE strategy

• is faithful,

• only requires a constant expected number of time steps (andO(log n) in the worst case) to
compute the location of a data item,

• needsΘ(n log2 N) memory to make sure that the number of data items stored in a node deviates
only by a constant factor from the ideal distribution, with high probability, and

• is 2-competitive concerning the amount of data items that have to be moved if the node set
changes. As in the previous strategies, no movements (apart from insertions of new or deletions
of old data items) are required if the data set changes.

A very important property of SHARE is that it isoblivious, i.e., the distribution of the data items
among the nodesonly depends on the current set of nodes and not on the history. This is not true, for
example, for the cut-and-paste strategy. The drawback of SHARE is that the fraction of data items in a
node is not highly concentrated around its capacity (unlesss is very large) and that its space complexity
depends onN and not just onn. The next, more complicated scheme will remove these drawbacks,
but at the cost of being non-oblivious.

The SIEVE strategy

The SIEVE strategy is also based on random hash functions that assign to each data item a real number
chosen independently and uniformly at random out of the range[0, 1). Suppose that initially the
number of nodes is equal ton. Let n′ = 2dlog ne+1. We cut[0, 1) into n′ rangesof size1/n′, and we

7

0 frame

U

h

1

10

Figure 7: The share strategy.

demand that every range be used by at most one node. If rangeI has been assigned to nodei, theni is
allowed to select any interval inI that starts at the lower end ofI. The intervals will be used in a way
(described in more detail below) that any data item mapped to a point in that interval will be assigned
to the node owning it. We say that a range iscompletely occupiedby a node if its interval covers the
whole range. A node can own several ranges, but it is only allowed to own at most one range that is
not completely occupied by it. Furthermore, we demand from every nodei that the total amount of the
[0, 1) interval covered by its intervals is equal toci/2 (it will actually slightly deviate from that, but for
now we assume it isci/2). This ensures the following property.

Lemma 5.8 For any capacity distribution, it is possible to assign ranges to the nodes in a one-to-one
fashion so that each node can select intervals in[0, 1) of total size equal toci/2.

Proof. Since every node is allowed to have only one partly occupied range, at mostn of then′ ranges
will be partly occupied. The remaining≥ n ranges cover a range of at least1/2, which is sufficient to
accommodate all ranges that are completely occupied by the nodes. ut

So suppose we have an assignment of nodes to intervals in their ranges such that the lemma is
fulfilled. Then we propose the strategy described in Figure 8 to distribute the data items among the
nodes (the fall-back node will be specified later). It is based onL random hash functionsh1, . . . , hL :
{1, . . . , M} → [0, 1), where initiallyL = log n′ + f . The parameterf will be specified later. Figure 8
implies the following result:

Theorem 5.9 SIEVE can be implemented so that the position of a data item can be determined in
expected timeO(1) using a space ofO(n log n).

Proof. Since the nodes occupy exactly half of the interval[0, 1), the probability that a data item
succeeds to be placed in a round is1/2. Hence, the expected time to compute the position of a data
item isO(1). ut

Let a data item that has not been assigned to a node in the for-loop of the algorithm above be called
a failed data item. Obviously, the expected fraction of data items that fail is equal to1/2L. Thus,

8

Algorithm SIEVE(d):
Input: numberd of a data item
Output: node number that storesd

for i = 1 to L do
setx = hi(d)
if x is in some interval of nodes then return s

return number of fall-back node

Figure 8: The SIEVE algorithm.

0 1

0 1

0 1

0 1

h1

U

. . . .

h

h

h

2

3

L

Figure 9: The sieve strategy.

the expected share of the data items any nodei (apart from the fall-back node) will get is equal to
ci(1− 1/2L). However, we want to ensure that every node gets an expected share ofci. To ensure this,
we first specify how to select the fall-back node.

Initially, the node with the largest share is the fall-back node. If it happens at some time step that
the share of the largest node exceeds the share of the fall-back node by a factor of 2, then the role is
passed on to that node.

Next we ensure that every nodei gets an expected share ofci. Let every non-fall-back node
choose anadjusted shareof c′i = ci/(1 − 1/2L), and the fall-back node chooses an adjusted share of
c′i = (ci − 1/2L)/(1 − 1/2L). First of all, the adjusted shares still represent a valid share distribution
because

∑

i

c′i =
1− ci

1− 1/2L
+

ci − 1/2L

1− 1/2L
= 1 .

9

When using these adjusted shares for the selection of the intervals, now every non-fall-back nodei
gets a true share of(ci/(1 − 1/2L)) · (1 − 1/2L) = ci and the fall-back node gets a true share of
((ci − 1/2L)/(1 − 1/2L)) · (1 − 1/2L) + 1/2L = ci. Hence, the adjusted shares will ensure that
the expected share of every node is precisely equal to its capacity. Thus, we arrive at the following
conclusion.

Theorem 5.10 SIEVE is perfectly faithful.

In addition, it can be shown (similar to the static hashing case) that nodei gets at mostcim +
O(
√

cim log m) data items with high probability.
In order to show that SIEVE also has a very good adaptivity, we have to consider the following

cases:

1. the capacities change

2. the numbern′ of ranges has to increase to accommodate new nodes

3. the role of the fall-back node has to change

4. the numberL of levels has to increase to ensure that1/2L is below the share of the fall-back
node

As for the SHARE strategy, changes in the number of data items do not require SIEVE to replace data
items in order to remain faithful, since SIEVE is based on random hashing.

We begin with considering the situation that the capacities of the system change fromP =
(p1, p2, . . .) to Q = (q1, q2, . . .). Then we use the following strategy: every nodei with qi < pi

reduces its intervals in a way that afterwards it again partly occupies at most one range, and then every
nodei with qi > pi extends its share so that it also partly occupies afterwards at most one range.

It is easy to check that there will always be ranges available for those nodes that increase their
share so that every range is used by at most one node. It remains to bound the expected fraction of the
data items that have to be replaced.

Lemma 5.11 For any change from one capacity distribution to another that does not involve the
change of the fall-back node, SIEVE has a competitive ratio of 2.

Next we consider the situation that the numbern′ of ranges has to increase. This happens if a new
node is introduced which requiresn′ = 2dlog ne+1 to grow. In this case, we simply subdivide each old
range into two new ranges. Since afterwards the property is still kept that every node partly occupies
at most one range, nothing has to be replaced.

Consider now the situation that the role of the fall-back node has to change. Recall that this happens
if the node with the maximum share has at least twice the share of the fall-back node. Lets1 be the old
ands2 be the new fall-back node. Suppose that the number of nodes in the system isn. Thens2 has
a share of at least1/n. At the time whens1 was selected, the share ofs1 was at least as large as the
share ofs2. Hence, the total amount of changes in the shares ofs1 ands2 since then must have been at
least1/(2n). Changing froms1 to s2 involves the movement of an expected fraction of

∣∣∣∣∣
c1 − 1/2L

1− 1/2L
− c1

1− 1/2L

∣∣∣∣∣ +

∣∣∣∣∣
c2

1− 1/2L
− c2 − 1/2L

1− 1/2L

∣∣∣∣∣

10

of the data items, which is at most3
2L−1

. If thef in the formulaL = log n′+f is sufficiently large, then
3

2L−1
¿ 1

2n
, and therefore the amount of work for the replacement can be “hidden” in the replacements

necessary to react to changes in the capacity distribution of the system.

Next consider the situation that the number of levelsL has to grow. Once in a while this is nec-
essary, since for the case that many new nodes are introduced the fall-back node may not be able or
willing to store a fraction of1/2L of the data items. We ensure that this will never happen with the
following strategy:

Whenever the share of the fall-back node is less than1/2L−t for some integert, we increase the
number of levels fromL to L + 1.

This strategy will cause data items to be replaced. We will show, however, that also here the
fraction of data items that have to be replaced can be “hidden” in the amount of data items that had to
be replaced due to changes in the capacity distribution.

Let sj be the fall-back node that required an increase fromL − 1 to L (resp. the initial fall-back
node if no such node exists), and letsk be the current fall-back node that requires now an increase
from L to L + 1. Then we know that the size ofs must have been at least1/2L−(t+1) when it became
a fall-back node. Suppose thatsk took over the role of a fall-back node fromsj. Then its share must
have been twice as large then the share ofsj. Since its share was at most the share ofsj whensj got
the role as fall-back node, the total amount of changes in the shares ofsj andsk since then must have
been at least1/2L−t. This can also be shown to be true for a longer history of fall-back nodes fromsj

to sk. Changing fromL to L + 1 involves the movement of an expected fraction of at most

∑

i6=k

∣∣∣∣∣
ci

1− 1/2L
− ci

1− 1/2L+1

∣∣∣∣∣




+

∣∣∣∣∣
ck − 1/2L

1− 1/2L
− ck − 1/2L+1

1− 1/2L+1

∣∣∣∣∣

of the data items, which is at most2
2L−3

. If t andf ≥ t are sufficiently large, then 2
2L−3

¿ 1/2L−t,
and therefore also here the amount of work for the replacement can be “hidden” in the replacements
necessary to accommodate changes in the distribution of shares.

Hence, we arrive at the following result.

Theorem 5.12 SIEVE is(2 + ε)-competitive, whereε > 0 can be made arbitrarily small.

References

[1] A. Brinkmann, K. Salzwedel, and C. Scheideler. Efficient, distributed data placement strategies for storage
area networks. InProc. of the 12th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages
119–128, 2000.

[2] A. Brinkmann, K. Salzwedel, and C. Scheideler. Compact, adaptive placement schemes for non-uniform
capacities. InProc. of the 14th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 53–62,
2002.

[3] A. Czumaj, C. Riley, and C. Scheideler. Perfectly balanced allocation. In7th Intl. Workshop on Random-
ization and Approximation Techniques in Computer Science (RANDOM), pages 240–251, 2004.

11

[4] D. Karger, E. Lehman, T. Leighton, M. Levine, D. Lewin, and R. Panigrahy. Consistent hashing and random
trees: Distributed caching protocols for relieving hot spots on the World Wide Web. InProc. of the 29th
ACM Symp. on Theory of Computing (STOC), pages 654–663, 1997.

[5] A. S. P. Berenbrink, A. Czumaj and B. Vöcking. Balanced allocations: The heavily loaded case. InProc. of
the 32nd ACM Symp. on Theory of Computing (STOC), pages 745–754, 2000.

12

