6 Distributed Data Management Il — Caching

In this section we will study the approach of using caching for the management of data in distributed

systems. Caching always tries to keep data at the place where it is needed. The problem with this
approach is that it may not be known in advance which processor will be the next to access a certain
data item. Is it nevertheless possible to find good caching strategies? When is a caching strategy
“good”? Obviously, a model is needed that allows us to measure the performance of caching strategies.

6.1 The model

Let G = (V, F) be an arbitrary graph, and |ét be the set of all shared objects. We assume that an
adversary specifies a distributed application running on the nodes of the network, i.e., the adversary
initiates read and write requests to the objects at the nodes of the nefwditkese requests must be
served by an on-line caching strategy.

We restrict the class of allowed applications specified by the adversarydatheace freei.e., a
write access to an object is not allowed to overlap with other accesses to the same object, and there i
some order among the accesses to the same object such that for each read and write access, there i
unique least recent write. Note that this still allows arbitrary concurrent accesses to different objects
and concurrent read accesses to the same object.

A caching strategy is callecbnsistentf it ensures that a read request directed to an object returns
the value of the most recent write access to that object. Write accesses are assumed to be objec
alterations rather than overwrites. That is, a writing node cannot just build a new copy of the object
from scratch, but first has to search for an existing copy of the object.

We are interested in finding caching strategies that are efficient even though they have no prior
knowledge of the actions of the adversary. These strategies are allowed to migrate, create, and invali-
date copies of an object. We do not allow to use encoding strategies.

Initially, each object has one copy somewhere in the network. Every message or migration of an
object along an edgeincreases its load (also calledngestionin the following) by one. We want
to keep the congestion as small as possible.oLie¢ an arbitrary data-race free sequence of read and
write requests. Furthermore, I€t!(o) be the total congestion causedeavhen using the caching
algorithm A for o, let C4 (o) = max, C# (o), and letCopr(c) = miny Cy(c). Algorithm A is called
c-competitivaf there is a constant so that for all sequences of requestae have

CA(O') S C'COPT(O') +d .

6.2 Cachingin trees
LetT = (V, E') be an arbitrary tree. Our caching strategyfoworks in the following way:

e v wants to read: v sends a request to the closest nade 7" that has a copy of. Upon receipt
of the requesty sends a copy af back tov. Every node visited by the copy will store a copy
of x.

e v wants to (re)writer: v sends a (re)write request forto the closest node in 1" that has a copy
of . Upon receipt of the messagestarts an invalidation broadcast to all other nodes that have

a copy ofz. Afterwards,u stores the new copy of and sends it back to. Every node visited
by the copy will store a copy of.

The strategy maintains the following invariant.

Fact 6.1 For every objectr and every time stefy the nodes that have a copy:oform a connected
component.

The invariant allows us to efficiently locate the nodes that store copies of an abjeetry node
has a sign post that points to the last node that issued a write request. (Initially, all sign posts point to
the unique copy of.) Additionally, we set markers at the border nodes of the connected component,
so that the invalidation broadcast is confined to the nodes of the connected component. Our simple
caching strategy achieves the following remarkable result.

Theorem 6.2 The caching strategy is 3-competitive.

Proof. Since the caching algorithm treats the objects independent of each other, it suffices to show
that it is 3-competitive for any single object. So let us consider some fixed ohjdatt e = (a, b)

be any edge in the tree. Removiadrom the tree breaks it down into two subtre&s,and7;,. We
distinguish between three cases:

e [A]: All copies are inZ,.
e [B]: All copies are inT}.
e [AB]: Both subtrees contain copies. (Observe that this impliesithatlb hold a copy.)

Consider any sequeneoeof read and write requests, and dgbe the configuration 4], [B], or [AB])
after processing thgh request iro. Then the sequeneg, ¢, ¢s, . . . is of the form

[T AB 7T [AB] 7 [AB]T . .

where([?] is a placeholder fofA] or [B] and [X]|* means any sequence &fs of length at least 1.
Without loss of generality, consider any period of the fdetiit [AB]*. We investigate the online and
offline cost of edge during that period. For the online cost we get:

subphase kind of request prev. config.| online cost
[A]t | starts with write fronl, (x) [AB]* 1
followed by requests fror, [A]* 0
[AB|*™ | starts with request frorf}, (s:x) [A]* 2
followed by reads fronT, or 7, [AB]* 0

What is the optimal offline cost in this period? Suppose that there exists an offline strategy with
cost 0. Then request) requires that there is no copy ifi. Furthermore, no copy is migrated.
Consequently, requestx) has cost at least 1, contradicting our assumption. Therefore, the online
cost in each period is 3 whereas the offline cost is at least 1. O

Notice that if we count the work for sending requests as 0 (which is a realistic assumption for large
objects), then the competitiveness of the online strategy would even be 2.

2

6.3 Caching in meshes

Consider an arbitrary, x n-meshM. Our caching strategy for the mesh is based on a hierarchical
decomposition of its nodes that is done in the following recursive way:

If M only consists of a single node, we are done. Otherwise, we parfifianto two submeshes
along the dimension with the most nodes (see Figure 1).

Figure 1: The decomposition @ff into submeshes.

This hierarchical decomposition can be representeddesamposition tre&'(M/). Its root repre-
sentsM, every internal node df'(M) represents a submesh i, every leaf a node of/, and every
edge a partition of a submesh into two submeshes. TH(U¥) is a binary tree of deptlv(logn).
We view nowT'(M) as a virtual network that we want to simulate b§. To be able to compare the
congestion in both networks, we define thendwidthb(e) of an edge: = {v, w} in T(M) (wherev
is the father ofw) as the number of edges that leave the subniést).

For every object;, we define an access trég(M) of = as a copy of the decomposition tréén).
We embedl’, (M) randomly inA by mapping every nodein T,.(M) to a random processat(v) in
M (v) and every edgév, w} in T,.(M) to a path fromr(v) to 7(w) using thexr — y routing strategy
presented in Section 3.1. This allows to simulate the movement of any messgdgé/ n by moving
it along the corresponding paths .

We apply now tdl’, (M) the same caching strategy that we used for the simple tree in Section 9.2.
When comparing our caching strategy with an optistakic placement strategy (i.e. every object is
stored at a single, fixed node i), we obtain the following theorem.

Theorem 6.3 ([1]) The caching strategy for the x n-mesh isO(log n)-competitive, with high prob-
ability.

Proof. In order to prove the above result we investigate two caching simulations. First, we consider
the problem of simulating an optimal caching strategy in the nié¢gby the tre€l’(A/), and then we
consider the problem of simulating a caching strated¥ (/) by the mesh\/.

3

In order to simulate an optimal caching strategy in the mesh({dy), we use the simple strategy
that whenever a request is sent from nede w in M, we send it along the unique path from the leaf
representing to the leaf representing in 7'(M).

In order to simulate a caching strategy/itM) by M, we use the strategy already explained above:
For every object: we embedl’, (M) randomly intoM, and whenever a request is sent along an edge
{v,w} inT,(M), we send it along the — y path fromz(v) to w(w) in M.

Let Copr (M) be the best possible congestion achievable in the mésbr the given application
and letCopr(T'(M)) be the congestion causeddi{)M) when simulating this best possible strategy
by T'(M). Then we get the following result.

Lemma 6.4 COPT(T(M)) < COPT(M).

Proof. Lete denote an edge &f (M) with bandwidthb(e), and letC(e) be the congestion caused

by messages traversiagvhen using the simulation strategy above (i.e. the total number of messages
traversinge is b(e) - C(e)). Any message that crosses= {v, w} in T'(M) corresponds to a message
that either has to leave or enter the subméshw) in M. Since there are onl(e) edges leaving

M (w), there must be an edge M (w) with congestion at leagtC(e) - b(e))/b(e) = C(e). Thus, the
maximum congestion over all edgesTii)/) is at most the maximum congestion over all edges/in
which proves the lemma. O

The next lemma gives an upper bound on the expected congestion caused by simulating the acces
tree strategy ofi/. In the following, letC(e) denote the congestion caused &r simulating?’ (M).

Lemma 6.5 For any edge: of M, E[Cr(e)] = O(logn - Copr(T(M))).

Proof. Let h denote the height df'(M) and letC,(e) denote the congestion caused:atue to the
simulation of edges on levélof T'(M), 1 < ¢ < h. We show thaE[C/(e)] = O(Copr(T(M))) for
all ¢ € {1,...,h}, which yields the lemma ds = O(logn).

Consider some fixed levél Letv be a node of (M) on levell — 1 such thatV/ (v) includes edge
e. (If such a node does not exist thEfC,(e)| = 0.) Letv’ be one of the two children af. We bound
the expected congestion emue to the simulation of the tree edge= {v, v’} on levell of T'(M).

Notice that every two levels it (M) the side length of the submeshes reduces by a factor of two.
Hence,M (v) is a©(n/2%?) x O(n/2"?)-mesh. Suppose that the congestiorzats C(er). Since
er has a bandwidth o®(n/2¢2), this means tha®(C(er) - n/2") requests pass through. Since
every objectr chooses a random place foeandv’ in M (v) and ther — y routing strategy only goes
throughe if v is in the row ofe or v’ is in the column of, the probability that the path for object
simulating{v, v’} moves through is equal to9(2/2 /n). So for@(C(er) - n/2"/?) requests usingr
the expected congestionais

O(C(er) - n/2"%) - ©(2%/n) = ©(C(er)) .
Thus,E[Ci(e)] = O(C(er)) = O(Copr(T(M)), which proves the lemma. 0

Combining the two lemmata, we ge{Cr(e)] = O(logn - Copr(M)) for all edgese in M. One
can also show that this bound holds with high probability, using the fact that for an abyeith %
write accesses the congestion(T caused for object must be at least/4 because all of these
requests must updateat the same, static location. O

4

One can also extend the theorem to the casedRé4t is allowed to use dynamic data management
(i.e. the location of object can change) by choosing a new random location of a madé&’, (1) each
time a write request passegand updating the pointers of its neighbordif{ /) correspondingly).

In addition to the upper bound, one can show the following result (see also Section 4).

Theorem 6.6 Any online caching strategy on thex n-mesh has a competitive ratio flog n).

Hence, the online caching strategy presented above is asymptotically optimal.

6.4 Caching in arbitrary networks

One can observe from the proof for the mesh that there is a general way of coming up with good online
caching strategy: Given some netwarktry to come up with a decomposition trégG) for G so that

e Copr(T(G)) < Copr(G), i.e. an optimal strategy i can be simulated by'(G) with at most
the congestion the optimal strategy needs, and

e for any edge: of G, E[Cr(e)] = O(v - Copr(T(G))), i.€. there is a way to simulate a caching
strategy inl’(G) by G so that the congestion increases by a factor of at most

The firstitem is easy to achieve, because no matterdi@gndecomposed to formi(G), Lemma 6.4
is always true. The difficult part is the second item. Here, it is important to come up with A (tf8e
so that

e the heighth of T'(G) is low, and

e for every edge in G and every level in T(G) it holds thatE[C(e)] = O(3 - C(er)) for some
low 3, whereer is an edge from level — 1 to Z in T'(G) whose(¢ — 1)-level node contains.

In this case we would get = O(h - 3). For further information on this subject see [3, 4].
One may ask whether it is always possible to find decompositions sh #ratj are polylogarith-
mic. Surprisingly, Ricke recently showed that this is possible:

Theorem 6.7 ([2]) For every networkG with non-negative capacities there is an online caching strat-
egy that achieves for every application a congestio®@ @ 'opr(G) - polylog(n)).

Hence, even if no knowledge is available about the requests issued by the processors, efficient
online caching is possible for arbitrary networks.

References

[1] B. Maggs, F. M. auf der Heide, B.a¢king, and M. Westermann. Exploiting locality for networks of limited
bandwidth. InProc. of the 38th IEEE Symp. on Foundations of Computer Science (Fp&its 284293,
1997.

[2] H. Racke. Minimizing congestion in general networks.Pioc. of the 43rd IEEE Symp. on Foundations of
Computer Science (FOCS)002.

[3] B. Vocking. Static and Dynamic Data Management in NetworkhD thesis, Dept. of Mathematics and
Computer Science, University of Paderborn, October 1998.

[4] M. WestermannCaching in Networks: Non-Uniform Algorithms and Memory Capacity ConstraiPt®
thesis, Dept. of Mathematics and Computer Science, University of Paderborn, November 2000.

