
6 Distributed Data Management II – Caching

In this section we will study the approach of using caching for the management of data in distributed
systems. Caching always tries to keep data at the place where it is needed. The problem with this
approach is that it may not be known in advance which processor will be the next to access a certain
data item. Is it nevertheless possible to find good caching strategies? When is a caching strategy
“good”? Obviously, a model is needed that allows us to measure the performance of caching strategies.

6.1 The model

Let G = (V,E) be an arbitrary graph, and letU be the set of all shared objects. We assume that an
adversary specifies a distributed application running on the nodes of the network, i.e., the adversary
initiates read and write requests to the objects at the nodes of the networkG. These requests must be
served by an on-line caching strategy.

We restrict the class of allowed applications specified by the adversary to bedata-race free, i.e., a
write access to an object is not allowed to overlap with other accesses to the same object, and there is
some order among the accesses to the same object such that for each read and write access, there is a
unique least recent write. Note that this still allows arbitrary concurrent accesses to different objects
and concurrent read accesses to the same object.

A caching strategy is calledconsistentif it ensures that a read request directed to an object returns
the value of the most recent write access to that object. Write accesses are assumed to be object
alterations rather than overwrites. That is, a writing node cannot just build a new copy of the object
from scratch, but first has to search for an existing copy of the object.

We are interested in finding caching strategies that are efficient even though they have no prior
knowledge of the actions of the adversary. These strategies are allowed to migrate, create, and invali-
date copies of an object. We do not allow to use encoding strategies.

Initially, each object has one copy somewhere in the network. Every message or migration of an
object along an edgee increases its load (also calledcongestionin the following) by one. We want
to keep the congestion as small as possible. Letσ be an arbitrary data-race free sequence of read and
write requests. Furthermore, letCA

e (σ) be the total congestion caused ate when using the caching
algorithmA for σ, let CA(σ) = maxe CA

e (σ), and letCOPT(σ) = minA CA(σ). Algorithm A is called
c-competitiveif there is a constantd so that for all sequences of requestsσ we have

CA(σ) ≤ c · COPT(σ) + d .

6.2 Caching in trees

Let T = (V,E) be an arbitrary tree. Our caching strategy forT works in the following way:

• v wants to readx: v sends a request to the closest nodeu in T that has a copy ofx. Upon receipt
of the request,u sends a copy ofx back tov. Every node visited by the copy will store a copy
of x.

• v wants to (re)writex: v sends a (re)write request forx to the closest nodeu in T that has a copy
of x. Upon receipt of the message,u starts an invalidation broadcast to all other nodes that have

1

a copy ofx. Afterwards,u stores the new copy ofx and sends it back tov. Every node visited
by the copy will store a copy ofx.

The strategy maintains the following invariant.

Fact 6.1 For every objectx and every time stept, the nodes that have a copy ofx form a connected
component.

The invariant allows us to efficiently locate the nodes that store copies of an objectx: every node
has a sign post that points to the last node that issued a write request. (Initially, all sign posts point to
the unique copy ofx.) Additionally, we set markers at the border nodes of the connected component,
so that the invalidation broadcast is confined to the nodes of the connected component. Our simple
caching strategy achieves the following remarkable result.

Theorem 6.2 The caching strategy is 3-competitive.

Proof. Since the caching algorithm treats the objects independent of each other, it suffices to show
that it is 3-competitive for any single object. So let us consider some fixed objectx. Let e = (a, b)
be any edge in the tree. Removinge from the tree breaks it down into two subtrees,Ta andTb. We
distinguish between three cases:

• [A]: All copies are inTa.

• [B]: All copies are inTb.

• [AB]: Both subtrees contain copies. (Observe that this implies thata andb hold a copy.)

Consider any sequenceσ of read and write requests, and letct be the configuration ([A], [B], or [AB])
after processing thetth request inσ. Then the sequencec0, c1, c2, . . . is of the form

. . . [?]+[AB]+[?]+[AB]+[?]+[AB]+ . . .

where[?] is a placeholder for[A] or [B] and [X]+ means any sequence ofX ’s of length at least 1.
Without loss of generality, consider any period of the form[A]+[AB]+. We investigate the online and
offline cost of edgee during that period. For the online cost we get:

subphase kind of request prev. config. online cost
[A]+ starts with write fromTa (∗) [AB]+ 1

followed by requests fromTa [A]+ 0
[AB]+ starts with request fromTb (∗∗) [A]+ 2

followed by reads fromTa or Tb [AB]+ 0

What is the optimal offline cost in this period? Suppose that there exists an offline strategy with
cost 0. Then request(∗) requires that there is no copy inTb. Furthermore, no copy is migrated.
Consequently, request(∗∗) has cost at least 1, contradicting our assumption. Therefore, the online
cost in each period is 3 whereas the offline cost is at least 1. ut

Notice that if we count the work for sending requests as 0 (which is a realistic assumption for large
objects), then the competitiveness of the online strategy would even be 2.

2

6.3 Caching in meshes

Consider an arbitraryn × n-meshM . Our caching strategy for the mesh is based on a hierarchical
decomposition of its nodes that is done in the following recursive way:

If M only consists of a single node, we are done. Otherwise, we partitionM into two submeshes
along the dimension with the most nodes (see Figure 1).

.

.

8 8

4 4

4 4 4 4

4 4

4 4 4 4

Figure 1: The decomposition ofM into submeshes.

This hierarchical decomposition can be represented as adecomposition treeT (M). Its root repre-
sentsM , every internal node ofT (M) represents a submesh ofM , every leaf a node ofM , and every
edge a partition of a submesh into two submeshes. Thus,T (M) is a binary tree of depthO(log n).
We view nowT (M) as a virtual network that we want to simulate byM . To be able to compare the
congestion in both networks, we define thebandwidthb(e) of an edgee = {v, w} in T (M) (wherev
is the father ofw) as the number of edges that leave the submeshM(w).

For every objectx, we define an access treeTx(M) of x as a copy of the decomposition treeT (M).
We embedTx(M) randomly inM by mapping every nodev in Tx(M) to a random processorπ(v) in
M(v) and every edge{v, w} in Tx(M) to a path fromπ(v) to π(w) using thex − y routing strategy
presented in Section 3.1. This allows to simulate the movement of any message inTx(M) by moving
it along the corresponding paths inM .

We apply now toTx(M) the same caching strategy that we used for the simple tree in Section 9.2.
When comparing our caching strategy with an optimalstaticplacement strategy (i.e. every object is
stored at a single, fixed node inM), we obtain the following theorem.

Theorem 6.3 ([1]) The caching strategy for then× n-mesh isO(log n)-competitive, with high prob-
ability.

Proof. In order to prove the above result we investigate two caching simulations. First, we consider
the problem of simulating an optimal caching strategy in the meshM by the treeT (M), and then we
consider the problem of simulating a caching strategy inT (M) by the meshM .

3

In order to simulate an optimal caching strategy in the mesh byT (M), we use the simple strategy
that whenever a request is sent from nodev to w in M , we send it along the unique path from the leaf
representingv to the leaf representingw in T (M).

In order to simulate a caching strategy inT (M) byM , we use the strategy already explained above:
For every objectx we embedTx(M) randomly intoM , and whenever a request is sent along an edge
{v, w} in Tx(M), we send it along thex− y path fromπ(v) to π(w) in M .

Let COPT(M) be the best possible congestion achievable in the meshM for the given application
and letCOPT(T (M)) be the congestion caused inT (M) when simulating this best possible strategy
by T (M). Then we get the following result.

Lemma 6.4 COPT(T (M)) ≤ COPT(M).

Proof. Let e denote an edge ofT (M) with bandwidthb(e), and letC(e) be the congestion caused
by messages traversinge when using the simulation strategy above (i.e. the total number of messages
traversinge is b(e) · C(e)). Any message that crossese = {v, w} in T (M) corresponds to a message
that either has to leave or enter the submeshM(w) in M . Since there are onlyb(e) edges leaving
M(w), there must be an edge inM(w) with congestion at least(C(e) · b(e))/b(e) = C(e). Thus, the
maximum congestion over all edges inT (M) is at most the maximum congestion over all edges inM ,
which proves the lemma. ut

The next lemma gives an upper bound on the expected congestion caused by simulating the access
tree strategy onM . In the following, letCT (e) denote the congestion caused ate for simulatingT (M).

Lemma 6.5 For any edgee of M , E[CT (e)] = O(log n · COPT(T (M))).

Proof. Let h denote the height ofT (M) and letC`(e) denote the congestion caused ate due to the
simulation of edges on level` of T (M), 1 ≤ ` ≤ h. We show thatE[C`(e)] = O(COPT(T (M))) for
all ` ∈ {1, . . . , h}, which yields the lemma ash = O(log n).

Consider some fixed level`. Let v be a node ofT (M) on level`− 1 such thatM(v) includes edge
e. (If such a node does not exist thenE[C`(e)] = 0.) Let v′ be one of the two children ofv. We bound
the expected congestion one due to the simulation of the tree edgeeT = {v, v′} on level` of T (M).

Notice that every two levels inT (M) the side length of the submeshes reduces by a factor of two.
Hence,M(v) is aΘ(n/2`/2) × Θ(n/2`/2)-mesh. Suppose that the congestion ateT is C(eT). Since
eT has a bandwidth ofΘ(n/2`/2), this means thatΘ(C(eT) · n/2`) requests pass througheT . Since
every objectx chooses a random place forv andv′ in M(v) and thex − y routing strategy only goes
throughe if v is in the row ofe or v′ is in the column ofe, the probability that the path for objectx
simulating{v, v′} moves throughe is equal toΘ(2`/2/n). So forΘ(C(eT) · n/2`/2) requests usingeT

the expected congestion ate is

Θ(C(eT) · n/2`/2) ·Θ(2`/2/n) = Θ(C(eT)) .

Thus,E[C`(e)] = O(C(eT)) = O(COPT(T (M)), which proves the lemma. ut

Combining the two lemmata, we getE[CT (e)] = O(log n · COPT(M)) for all edgese in M . One
can also show that this bound holds with high probability, using the fact that for an objectx with k
write accesses the congestion inOPT caused for objectx must be at leastk/4 because all of these
requests must updatex at the same, static location. ut

4

One can also extend the theorem to the case thatOPT is allowed to use dynamic data management
(i.e. the location of objectx can change) by choosing a new random location of a nodev in Tx(M) each
time a write request passesv (and updating the pointers of its neighbors inTx(M) correspondingly).

In addition to the upper bound, one can show the following result (see also Section 4).

Theorem 6.6 Any online caching strategy on then× n-mesh has a competitive ratio ofΩ(log n).

Hence, the online caching strategy presented above is asymptotically optimal.

6.4 Caching in arbitrary networks

One can observe from the proof for the mesh that there is a general way of coming up with good online
caching strategy: Given some networkG, try to come up with a decomposition treeT (G) for G so that

• COPT(T (G)) ≤ COPT(G), i.e. an optimal strategy inG can be simulated byT (G) with at most
the congestion the optimal strategy needs, and

• for any edgee of G, E[CT (e)] = O(γ · COPT(T (G))), i.e. there is a way to simulate a caching
strategy inT (G) by G so that the congestion increases by a factor of at mostγ.

The first item is easy to achieve, because no matter howG is decomposed to formT (G), Lemma 6.4
is always true. The difficult part is the second item. Here, it is important to come up with a treeT (G)
so that

• the heighth of T (G) is low, and

• for every edgee in G and every level̀ in T (G) it holds thatE[C`(e)] = O(β · C(eT)) for some
low β, whereeT is an edge from level̀− 1 to ` in T (G) whose(`− 1)-level node containse.

In this case we would getγ = O(h · β). For further information on this subject see [3, 4].
One may ask whether it is always possible to find decompositions so thath andβ are polylogarith-

mic. Surprisingly, R̈acke recently showed that this is possible:

Theorem 6.7 ([2]) For every networkG with non-negative capacities there is an online caching strat-
egy that achieves for every application a congestion ofO(COPT(G) · polylog(n)).

Hence, even if no knowledge is available about the requests issued by the processors, efficient
online caching is possible for arbitrary networks.

References

[1] B. Maggs, F. M. auf der Heide, B. V̈ocking, and M. Westermann. Exploiting locality for networks of limited
bandwidth. InProc. of the 38th IEEE Symp. on Foundations of Computer Science (FOCS), pages 284–293,
1997.

[2] H. Räcke. Minimizing congestion in general networks. InProc. of the 43rd IEEE Symp. on Foundations of
Computer Science (FOCS), 2002.

5

[3] B. Vöcking. Static and Dynamic Data Management in Networks. PhD thesis, Dept. of Mathematics and
Computer Science, University of Paderborn, October 1998.

[4] M. Westermann.Caching in Networks: Non-Uniform Algorithms and Memory Capacity Constraints. PhD
thesis, Dept. of Mathematics and Computer Science, University of Paderborn, November 2000.

6

