8 Supervised Overlay Networks Il

In this section we present a general framework for constructing supervised overlay networks. The main

ingredients of this framework are the hierarchical decomposition approach that we have already used
for oblivious routing and distributed caching and the continuous-discrete approach of Naor and Wieder

[4]. Afterwards, we show how to use these approaches to design supervised hypercubic networks anc
supervised de Bruijn networks. Up to this point we assume that all peers are honest and reliable.

However, in reality, peers may fail or may behave in a selfish or adversarial way. To address these
issues, we present a general approach for making supervised overlay networks robust against faulty
and adversarial behavior.

8.1 A general framework for supervised overlay networks

We start with our general framework. First, we describe the hierarchical decomposition approach,
then we describe the continuous-discrete approach, and after that we show how to glue these two
approaches together to obtain our general framework.

The hierarchical decomposition approach

Consider any spadé = [0, 1) for some fixedl > 1. Thedecomposition tre@'(U) of U is an infinite
binary tree in which the root represerifsand for every node representing the subculg in U, the
children ofv represent two subcubés’ andU"’, whereU” andU"" are the result of cutting/’ in the
middle at the smallest dimension in whi€h has a maximum side length. Let every edge to a left
child in 7'(U) be labeled with 0 and every edge to a right child/if/) be labeled with 1. Then the
label of a nodey, t,, is the sequence of all edge labels encountered when moving along the unique
path from the root of (U) downwards ta. Ford = 2, the result of this decomposition is shown in
Figure 1.

Our goal for the supervised peer-to-peer system will be to map the peers to nddgs)cfo that
the following invariants are met:

Invariant 8.1 1. The subcubes of the (nodes assigned to the) peers are disjoint,
2. the union of the subcubes of the peers gives the entiré,satd

3. the peers are only distributed among nodes of two consecutive levE(#/in

To satisfy these invariants, we use the following mapping strategy:
Recall the supervised cycle network in the previous section/ betthe labeling function used in
the cycle. We change the labels in a way that for every p@ethe cycle, its new labél is

0, =10,00" wherek = max{|lsucc(w)| — |6u],0}

(“o0*” means “appended by zeroes”). Every peer is mapped to the node in the decomposition
tree witht,, = ¢, with the only exception that if there is only one peer in the system, it is mapped to
the root of the decomposition tree. This mapping strategy has the following property:

Lemma 8.2 The mapping strategy satisfies Invariant 8.1.

1

Figure 1: The decomposition tree fér= 2.

Proof. We prove the lemma by complete induction on the number of nodes in the system. Initially,
there is only one node in the system, which is mapped to the root of the decomposition tree. Hence,
Invariant 8.1 is obviously true.
Suppose now that we already showed the lemma fowdes. Then we will show that it is also true
for n + 1 nodes. Let be the new node and its predecessor on the cycle. Given that the old label of
w was/. , it holds for the new labelg, and/, that?, = ¢/ o 0 and/¢, = ¢!/ o 1. Hence, given that
w was mapped to node in the decomposition treey andv are mapped ta’s children afterwards.
Since the subcubes ofs children are disjoint and the union of them is the subcube associated with
one can easily check that all 3 conditions in Invariant 8.1 must still hold aftas been inserted into
the cycle. O

The continuous-discrete approach

Again, consider anyl-dimensional spac& = [0, 1)¢ for some fixedd, and suppose that we have a
(possibly infinite) collection?’ of functionsf; : U — U. Let

Bp={(z,y) € U*|Ji: y= fi(x)}
Then(U, Er) can be seen as a directed graph on an infinite number of nodes. For ghy_sEtlet
LS)={yeU\S|3JzeS: (z,y) € Er} be the neighbor set of. We say that{U, Er) is
connectedf for every setS C U it holds thatl’(5) # 0.
Consider now any finite set of peers and letR(v) be the region irU that has been assigned to
peerv. Let Gr(V) be the directed graph with node $étand edge set

E={(v,w)eV?| 3z € Rw)Iy € R(w): (z,y) € Ep}

2

Then it holds:
Lemma 8.3 If (U, Er) is connected and),., R(v) = U, then alsoG (V) is connected.

Proof. Suppose thatU, Er) is connected and),., R(v) = U butGr(V') is not connected. Then
there must be a sét’ C V' that has no edge leaving it. L& = U,cy» R(v) andR” = U,cy\v R(v).
Sincel'(R') # 0 andT'(R’) C R”, there must exist am € R’ and ay € R” with (z,y) € Er. Hence,
according to our definition of7 (1), there must exist a node € V' and a nodev € V \ V' with
(v,w) € E, contradicting our assumption. O

Our goal will therefore be to make sure that.,, R(v) = U. When using the mapping strategy of
our hierarchical decomposition approach, this property is satisfied.

Putting the pieces together

Now we are ready to describe our general framework. Consider any &pacf, 1)? and collection
of functions F'. Recall that for a peev, R(v) is the subcube associated with the naden the
decomposition tree with,, = ¢,. Our goal is to maintain the following invariants at any time.

Invariant 8.4 Every peew in the system is connected to
e pred(v) andsucc(v) (the cycle edges) and

e all peersw with the property that'(R(v)) N R(w) # () (the edges of the grapfi (1))

Invariant 8.5 The supervisor is connected jpoed(v), v, succ(v), andsucc(succ(v)) wherew is the
peer with label(n — 1).

It turns out that this is very easy.

Lemma 8.6 For any join or leave request, the supervisor has sufficient information to maintain In-
variant 8.4.

Proof. First, consider the situation that a new peg@ins the system. From the proof of Lemma 8.2 we

know thatpred(v) will cut its subcube, say, in half, keep one half, sa§;, and give the other half,,

tov. According to Invariant 8.4; needs to establish connections to all peewgith T'(R,) N R(w) # 0.

However, sinceR, C R, pred(v) owns all of these connections befargoins the system. Hence, all

the supervisor has to do is agked(v) to move all those edgésgred(v), w) with T'(Ry) N R(w) # ()

to v. Thus, the connections that the supervisor has according to Invariant 8.5 suffice to do all updates.
Since the Leave operation is just the reverse of a Join operation, also Leave operations can be

executed with the connectivity information the supervisor has according to Invariant 8.5, under the

assumption that the leaving node passes all of its connections to the node taking over its place in the

cycle. O

From the lemma it follows that, besides the supervisor being able to handle join and leave re-
guests with its limited information, the time and work the supervisor has to invest for these requests is
constant.

8.2 Examples

First, we show how to maintain a supervised hypercube. Recall the definition of a hypercube. Ac-
cording to this definition, every node with labgt,, ..., z;) € {0,1}? is connected to the nodes
(T1, T2y ...y xq), (X1, T2, T3, .., Xq),y ..oy (T1, ..., 41, Tq), Wherez = (1 + x) mod2. Consider now

the spacé/ = [0, 1) and the collectiort’ = {f;", f; : U — U | i € IN} of functions

fi(z)=(z—1/2)ymod1 and f(z)= (z+1/2") modl.

When interpreting every labéky, ..., ;) asz = 2%, z;/2¢, then for every neighbat’ of z in the
hypercube there is a functighe F with f(z) = 2’. More precisely, if: andz’ only differ in theith
bit, then it holds:

e if z; = 1thenz’ = f;7 (z) and

o if z; = 0thenz’ = f;"(z).

From Lemma 8.6 it immediately follows:

Theorem 8.7 Using our framework, the supervisor can maintain a dynamic hypercube with work and
timeO(1) for each join and leave request.

Also a low degree and diameter and a high expansion can be maintained.

Theorem 8.8 Using our framework, it holds that at any time, the dynamic hypercube has an outdegree
of ©(logn), a diameter ofD(log n) and an expansion dk(1/logn), wheren is the number of peers
in the system.

Proof. First, we bound the degree. According to Invariant 8.1, every peeresponsible for an inter-
val R(v) of size in{1/n,2/n} wheren = 2l°s"], Using any functiory € F, any intervall is mapped

to an intervalf (/) of length the length of. Hence, when using the continuous-discrete approach for
the edges, every peer has at most two outgoing edges for every furicoh’. Furthermore, once

i > logn + 1, the intervalf(I) is contained inR(pred(v)) U R(v) U R(succ(v)). Hence, every peer
has an outdegree of at ma@togn + 1).

Next, we consider the diameter. Consider any two paintse [0, 1). Let (1, zo,...), (y1,Y2, - -)
€ {0, 1}* be the binary representations:ofindy. Using F, it takes at mosk traversals of edges to
adjust(xy,...,xx) to (y1,...,yx) In (U, Er). Since for every edgé:r’,y’) € Ep there is an edge
(v, w') in Gp with 2 € R(v') andy’ € R(w'), it takes at mostogn + 2 edge traversals ity to
get from the node owningz (i.e.,x € R(v)) to the nodew owningy (i.e.,y € R(w)). Hence, the
diameter of the dynamic hypercube(iglog n).

Finally, it is not difficult to see that if the peers are assigned to a single level of the decomposition
tree, say levell, thenG (V') contains as a subgraph thHedimensional hypercube. Hence, because
the peers are only spread across two consecutive levels of the decomposition tree, the expansion o
Gr(V) is at least half of the expansion of the; n-dimensional hypercube, whichi&1/logn). O

Next, we show how to maintain a supervised de Bruijn network. Recall the definition of a de
Bruijn graph. In this definition, every node with lakfel;, . . ., z4) € {0, 1}%is connected to the nodes

4

(0,z1,...,x2q4) @and(1, xy,...,z4). Consider now the spaé¢é = [0, 1) and the collectiorf’ = { fy, f1}
of functions
fo(x)=2x/2 and fi(z)=(1+=x)/2.

When interpreting every labgl, ... z,) asz = >, 2;/2', then these functions are a good ap-
proximation of the de Bruijn edges. In fact, fdr— oo they match the de Bruijn edges. Hence, it
follows:

Theorem 8.9 Using our framework, the supervisor can maintain a dynamic de Bruijn network with
work and timeO(1) for each join and leave request.

Also, similar to Theorem 8.8 it holds:

Theorem 8.10 Using our framework, it holds that at any time, the dynamic de Bruijn network has an
outdegree ob(1), a diameter ofD(logn) and an expansion ¢k(1/logn), wheren is the number of
peers in the system.

Proof. Itis not difficult to check that whenever the peers are assigned to nodes in a single level of the
decomposition tree, say levél thenG (V') is exactly equal to thé-dimentional de Bruijn graph. In

the worst case, the peers can only be distributed across two consecutive levels of the decompositior
tree, which implies the theorem. O

Also dynamic versions of expander graphs can be constructed. Recall the Gabber-Galil graph in
Section. Here, we can set= [0,1)?> andF = {fi, fo} with

filz,y) = (z,(x +y) modl) and fo(z,y) = ((z +y) mod1,x)

to obtain a continuous version of this graph. Also this version can be maintained with constant work
and time for the supervisor for each join and leave requests. Furthermore, the following result holds.

Theorem 8.11 Using our framework, it holds that at any time, the dynamic Gabber-Galil network
has an outdegree @?(1), a diameter of)(log n) and an expansion @ (1), wheren is the number of
peers in the system.

Many more topologies are possible.

8.3 Robustness against random faults

So far we assumed that the peers leave gracefully, i.e., they announce their departures to the superviso
In reality, however, also ungraceful departures can occur. In this section we show how to handle this
case under the assumption that ungraceful departures are uniformly distributed over the cycle and the
rate of ungraceful departures is slow enough for the supervisor to handle. Towards this goal we require
the supervisor to maintain the following invariants for sokre be specified later.

Invariant 8.12 Every peemw in the system is connected to

e pred,(v) andsucc;(v) for everyi € {1,...,k} and

5

e all peersw with the property that'(R(N,)) N R(N,,) # 0

whereN, = {v} U {pred;(v) | i € {1,...,k}}U{succ;(v) | i € {1,...,k}} and forany set’’ C V,
R(V') = Usev R(v).

That is, now we have some redundancy in the system, since every peer takes care of all the edge:
in its k-neighborhood.

Invariant 8.13 The supervisor maintairjsin connectiong&ndrepair connections

e Join connections are to, the 2k closest predecessors ofand the3k closest successors of
whereuw is the peer with label(n — 1).

e Repair connections are to some (missing or fixed) peehe k closest predecessors ofand
thek closest successors ot

The join connections are used for the peers that want to join the system, and the repair connections
are used to refill the positions of peers that have left the system in an ungraceful manner.

The join operation works as for graceful departures. Whenever a new peer joins the system, the
supervisor introduces it to existing peers so that its and the existing peers’ connections satisfy Invari-
ant 8.4. Afterwards, the supervisor requests new connections so that it can maintain its own invariant.
The only difference to the graceful case is that whenever a peer is missing, it is ignored by the super-
visor. Missing peers are exclusively handled by its repair connections.

The leave operation works in a way that the gracefully leaving petalls the supervisor all of
its connections so that the supervisor can reverse the last join operation and can use the peer in tha
operation to fill the position ofv. Missing peers are ignored and left to the repair connections.

The repair connections work as follows. Suppose the repair connections are currently centered
around some intact peer. If at least one of thé closest successors ofis missing, then choose the
closest one as the new peey request the missing successors of it, and execute the Leave operation
for w (which can be executed by the supervisor because all connectivity informatiois @ivailable).
Otherwise, wait until the first successorwfeaves and then do the same as above.

These rules have the following property.

Theorem 8.141f £ = O(logn) is sufficiently large and ungraceful departures are distributed uni-
formly at random on the cycle and the rate of departures is low enough so that they can be handled
by the supervisor, then for any/, F') in our framework the supervisor can maintain a graph in which
every(z,y) € Er has at least one pair of working peefs w) so thatz € R(N,), y € R(N,,) andv

has an edge ta.

Proof. (Sketch) We need to show two lemmas.

Lemma 8.15 In one round through the cycle, the repair connections handle all ungraceful departures
that happened up to the beginning of that round.

Proof. At any time, the supervisor knows exactly which positions in the cycle should be occupied,

which are those positions with label§)), ..., ¢(n — 1). Hence, the supervisor can determine the
positions with missing peers and repair them. Since the supervisor always repairs the closest missing

6

successor, on its tour around the cycle, it will not leave out any position the a peer that left in an
ungraceful way before the beginning of the tour. O

In the following, a position on the cycle is calledlid if it is associated with a label ifi¢(0), . ..,

ln—1)}.

Lemma 8.16 Suppose that every peer fails with a constant probability p < 1. Then there is an
s = O(p~'logn) so that for every sequence o©tonsecutive valid positions, the probability that all
or none of them have a failed peer is polynomially smatt.in

Proof. Consider some fixed sequences@onsecutive valid positions. The probability that all of them
have a failed peer is equal to
pS S n*C
if s > (clogn)/logp, and the probability the none of them have a failed peer is equal to
(1-p)y < n=¢

if s > (d'logn)/log(1 —p). Sinced < p < 1, there is ans = O(logn) so that both probabilities

are polynomially small im. In this case, the probability is also polynomially smalluirthat there is

any sequence ofconsecutive valid positions where all or none of them have a failed peer, proving the
lemma. O

Suppose that in the time it takes for the supervisor to perform a complete tour around the cycle
with its repair connectionwithoutwaiting for failures, at most anfraction of the peers can fail for
some sufficiently small constaat> 0. Then Lemma 8.16 implies that every repair tour through
the cycle with waiting for failures takes an amount of time in which at most a constant fraction of
the peers fail, with high probability. Since all previous failures have been handled by previous repair
tours, failures can be kept at a constant fraction so that the supervisor can keep up with the failures,
with high probability. In this case, it holds that for any sequencé obnsecutive valid positions at
least one of them is occupied by a work peer, which implies that e\ery) € Er has at least one
pair of working peergv, w) so thatr € R(N,), y € R(N,,) andv has an edge to.

(A more formal proof will be given here in the future.) O

8.4 Robustness against adversarial behavior

When considering adaptive adversarial attacks, it does not suffice that the supervisor maintain infor-
mation as in the previous subsection as the adversary can place nodes at critical positions to effectively
disconnect the supervisor from the network or disrupt routing.

Formally, we allow the adversary to own up 4o of the n nodes in the system for some suffi-
ciently small constant > 0. These nodes are also calladversarialnodes and the rest are called
honestnodes. The supervisor and the honest nodes are oblivious to adversarial nodes, i.e., there is nc
mechanism to distinguish at any time whether a particular node is honest or not. To achieve robustness
in the presence of an adaptive adversary, we use the following scheme.

In the following, aregionis an interval of sizel /2° in [0,1) starting at an integer multiple of
1/2¢ for somei > 0, and a node belongs to a regioR if r(¢,) € R. Recall thatn = 28"/,

The supervisor organizes the nodes into non-overlapgpirogum regionso that each region contains

7

betweenclogm and2clogm nodes for some constant> 1. Whenever these bounds are violated in
a quorum region, the supervisor splits it or merges it with a neighboring region. Tibdes are also
organized into 5 setS; to S5 and the following invariant is maintained for these sets.

Invariant 8.17 At all times,

1. S, hasn/8 nodes with label$(0), - - -, ¢(1/8 — 1).
/8), -+, l(m/4—1).
/4), -+, 0(m/2 —1).
4. S, hasn/2 nodes with labelg(7/2), -, {(n — 1).

(
2. Sy hasm/8 nodes with labelg(m
(m

3. S5 hasm/4 nodes with label$

5. S5 has the remaining — 7 nodes with labelg(n), - - -, {(n — 1).

The following invariants describe the connections maintained by the nodes in the various sets and
the connections maintained by the supervisor. To simplify notation, for a real numkbef0, 1),
R(z) is the quorum region that belongs to and;(R) is the set ofS;-nodes belonging t&. For
every quorum regiork, let Sp = S;(R) U Sy(R) andSp = S3(R) U S4(R) U S5(R) if R precedes
R(r(¢(n — 1))), and otherwiseSy = S;(R) andSi = Sy(R) U S3(R) U S4(R) U S5(R).

Invariant 8.18 For all quorum regionsR, every Sz-node is connected to all nodes By, U Sk.
Every Sk-node is also connected to all nodes in the predecessor and successor regiBnsief
notedpred(R) andsucc(R), and for everyu € Sy that has a connection to a nodec Sg according
to the continuous-discrete approach, 8j-nodes are connected to &l -nodes.

Invariant 8.19 The supervisor maintairjsin connection@ndmixing connections

¢ Join connections are to all the nodesSi in the regionsRk(r(¢(n — 1))), pred(R(r(¢(n —1))))
andsucc(R(r(¢(n —1)))).

e Mixing connections are to all nodes i (R), S2(R) andS;(R) for some quorum regiok. The
supervisor also has some special connection to a marked fadé; (R) U S2(R) U S3(R).

The setS; is referred to as thetableset. The goal of the supervisor is to have the honest nodes
in the majority in every seb; (R), with high probability, since then quorum strategies can be used
to wash out adversarial behavior. The Sgtis in a stage called thsplit-and-mergestage because
So-nodes are merged into the stable set or removed from it as nodes join or leave the system. The se
Sz is in a stage callechixing stage in which the supervisor performs random transpositions to ensure
that the nodes are well-mixed before being integrated into the stable set. THieis@t areservoir
stage. S, is used to fill departed positions in the sétsto S; by selecting random nodes 8} and
filling their positions with the last nodes is. Finally, the setS5 is in afilling stage where new nodes
are added by assigning them the labiel — 1).

The join and leave operations are extended as follows.

Join operation

The supervisor assigns to the new nadtne label/(n) and integrates it so that the Invariants 8.17

and 8.18 are satisfied. Afterwards, the supervisor takes the closest succesaarmig the nodes in
S1(R)U Sy (R) U S3(R) of the mixing regionk and calls this node the neiw If there is no such node,

the supervisor moves to the quorum regigrsucceeding the regioR and assigned to the first node

in Sy (R)US2(R)US;(R'). Suppose that the neinbelongs taS;. Then the supervisor chooses a node

w with position betweern (inclusive) and 1 (exclusive) uniformly at random and exchanges (or more
precisely, asks the current mixing region to exchange) the positiohamdw. The supervisor finally
updates its connections so that Invariant 8.19 is satisfied. Each time a new node causes the supervisc
to switch from a join regiorR to succ(R), the nodes irby(R) are merged int®; (R) as prescribed by
Invariant 8.18.

Leave operation

If a nodev leaves withw € S, U S5, the supervisor simply replaces it by the last nodgsinOtherwise,
the supervisor replacesby a random node i, (resp. orders the current join region to do this) which
is replaced by the last node i3, and the supervisor performs a mixing operation in the current mixing
region in the same way as for a join operation. (The supervisor initiates the leave operatiamnfpr
if a majority of S;-nodes inv's region notify it about that. In this case, the supervisor can be sure
thatv has indeed left so that it correctly initiate's replacement.) Each time a departure causes the
supervisor to switch from a regiaR to pred(R), the nodes irby(pred(R)) are split away frons, (R)
as prescribed by Invariant 8.18.

These operations yield the following result.

Theorem 8.20 For a sufficiently small constant > 0 it holds that as long as the adversary owns
at mosten nodes, the above scheme guarantees that in every régidhe honest nodes are in the
majority in S;(R), with high probability.

Proof. (Sketch) The following lemma is crucial for the theorem.

Lemma 8.21 Once a pass has been made through all positionts af € {1, 2, 3}, the positions irf;
form a random permutation.

Proof. Givenm positions, consider the random experiment of first switching the first position with
a position in{1,...,m} chosen uniformly at random, then switching position 2 with a position in
{2,...,n} uniformly at random, and so on, until positien is reached. This random experiment
creates a random permutation of thepositions for the following reasons:

e Every permutation has exactly one outcome of the random experiment.
e Every outcome of the random experiment is equally probable.

O

Hence, it takes at mostjoin and leave operations (whergs the initial number of nodes) until all
nodes inSy, S, andSs that were initially around are randomly permuted. For every new node, i

andS; a random node iy, is picked, which is adversarial with probability at mést)/(n/2) < 4e.
In the worst case, all honest nodesSsleave and the adversarial nodes stay. In this case, a simple
probability analysis can show that as longeas- 0 is a sufficiently small constant, the adversarial
nodes will not be in the majority in any quorum region.

If in every quorum region the honest nodesSinare in the majority, then adversarial behavior can
be washed out in all operations so that the supervised overlay network works correctly. O

8.5 Applications

Finally, we discuss some applications of the supervised overlay networks that arise in the area of
distributed computing.

Grid Computing

Recently, many systems such as SETI@home [6], Folding@home [2], and Distributed.net [1] have
been proposed for distributed computing. A main drawback of such systems is that the topology of
the system is a star graph with the central server maintaining a direct connection to each client. Such
a topology imposes heavy demands on the central server. Instead, we can use our general framewor
for supervised overlay networks to maintain an overlay network for distributed computing. Peer-to-
peer connections allow subtasks to be spawned without the involvement of the supervisor so that the
demands on the server can be significantly reduced. This is particularly interesting for distributed
branch-and-bound computations as was discussed in [5].

WebTv

Our approach can also be used in Internet applications such as WebTv. In such an application, there ar
typically various channels that users can browse or watch while being connected to the Internet. The
number of channels ranges in the scale of hundreds while the number of users can range in the scal
of millions. Such a system should allow users to quickly zap through channels. Hence, such a system
should allow for rapid integration and be scalable to a large number of users. Our supervised overlay
networks can easily achieve such a smooth operation. Suppose that every channel has a superviso
each supervisor maintains its own broadcast network, and the supervisors form a clique. Then it fol-

lows from our supervised approach, which can handle join and leave operations in constant time, that
users browsing through channels can be moved between the networks in a very fast way, comparable
to server-based networks, so that users only experience an insignificant delay.

Massive multi-player online gaming

Distributed architectures for massive multi-player online gaming (MMOG) have only recently been
studied formally (see e.g., [3]). The basic requirements of such a system includes authentication,
scalability, and rapid integration. Traditionally, such systems have been managed by a central server
that takes care of the overall system with limited communication between the users. Certainly, such a
system will not be scalable and also might experience heavy congestion at the central server. Hence
distributed architectures are required at a certain scale. A supervised overlay network approach car
help here. For example, in a large virtual world, every supervisor may be responsible for a certain

10

part of the world, and the supervisors may be interconnected like a cellular network to allow a fast
handover process between them. Each supervisor then takes care of the peers currently exploring it
part of the world. Since in our supervised approach peers can quickly be integrated and removed from
a network, the handover process can be realized in a very fast way so that even fast moving peers
can be handled. Additional supervisors may also be used for load balancing purposes in a sense tha
whenever a supervisor is heavily loaded, other supervisors may help out by taking over some of its
peers and/or parts of the virtual world. In this way, it should be possible to create new generations of
games in very complex worlds.

References

[1] Distributed.net. Available at http://www.distributed.net/.
[2] Folding@home. Available at http://folding.stanford.edul/.

[3] C. GauthierDickey, D. Zappala, and V. Lo. A fully distributed architecture for massively multiplayer online
games. IMCM Workshop on Network and System Support for Gaatés!.

[4] M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-discrete approach. In
Proc. of the 15th ACM Symp. on Parallel Algorithms and Architectures (SRfsfyes 50-59, 2003.

[5] C. Riley and C. Scheideler. A distributed hash table for computational grid4.8tn Int. Parallel and
Distributed Processing Symposium (IPDP&)04.

[6] SETI@home. Available at http://setiathome.berkeley.edu/.

11

