
8 Supervised Overlay Networks II

In this section we present a general framework for constructing supervised overlay networks. The main
ingredients of this framework are the hierarchical decomposition approach that we have already used
for oblivious routing and distributed caching and the continuous-discrete approach of Naor and Wieder
[4]. Afterwards, we show how to use these approaches to design supervised hypercubic networks and
supervised de Bruijn networks. Up to this point we assume that all peers are honest and reliable.
However, in reality, peers may fail or may behave in a selfish or adversarial way. To address these
issues, we present a general approach for making supervised overlay networks robust against faulty
and adversarial behavior.

8.1 A general framework for supervised overlay networks

We start with our general framework. First, we describe the hierarchical decomposition approach,
then we describe the continuous-discrete approach, and after that we show how to glue these two
approaches together to obtain our general framework.

The hierarchical decomposition approach

Consider any spaceU = [0, 1)d for some fixedd ≥ 1. Thedecomposition treeT (U) of U is an infinite
binary tree in which the root representsU and for every nodev representing the subcubeU ′ in U , the
children ofv represent two subcubesU ′′ andU ′′′, whereU ′′ andU ′′′ are the result of cuttingU ′ in the
middle at the smallest dimension in whichU ′ has a maximum side length. Let every edge to a left
child in T (U) be labeled with 0 and every edge to a right child inT (U) be labeled with 1. Then the
label of a nodev, tv, is the sequence of all edge labels encountered when moving along the unique
path from the root ofT (U) downwards tov. Ford = 2, the result of this decomposition is shown in
Figure 1.

Our goal for the supervised peer-to-peer system will be to map the peers to nodes ofT (U) so that
the following invariants are met:

Invariant 8.1 1. The subcubes of the (nodes assigned to the) peers are disjoint,

2. the union of the subcubes of the peers gives the entire setU , and

3. the peers are only distributed among nodes of two consecutive levels inT (U).

To satisfy these invariants, we use the following mapping strategy:
Recall the supervised cycle network in the previous section. Let` be the labeling function used in

the cycle. We change the labels in a way that for every peerv in the cycle, its new label̀′v is

`′v = `v ◦ 0k wherek = max{|`succ(v)| − |`v|, 0}

(“◦0k” means “appended byk zeroes”). Every peerv is mapped to the nodew in the decomposition
tree withtw = `′v, with the only exception that if there is only one peer in the system, it is mapped to
the root of the decomposition tree. This mapping strategy has the following property:

Lemma 8.2 The mapping strategy satisfies Invariant 8.1.

1

1110

000

0100

10

0

.

0 1

0 1 0 1

0 1 0 1 0 1 1

Figure 1: The decomposition tree ford = 2.

Proof. We prove the lemma by complete induction on the number of nodes in the system. Initially,
there is only one node in the system, which is mapped to the root of the decomposition tree. Hence,
Invariant 8.1 is obviously true.

Suppose now that we already showed the lemma forn nodes. Then we will show that it is also true
for n + 1 nodes. Letv be the new node andw its predecessor on the cycle. Given that the old label of
w was`′′w, it holds for the new labels̀′w and`′v that `′w = `′′w ◦ 0 and`′v = `′′w ◦ 1. Hence, given that
w was mapped to nodeu in the decomposition tree,w andv are mapped tou’s children afterwards.
Since the subcubes ofu’s children are disjoint and the union of them is the subcube associated withu,
one can easily check that all 3 conditions in Invariant 8.1 must still hold afterv has been inserted into
the cycle. ut

The continuous-discrete approach

Again, consider anyd-dimensional spaceU = [0, 1)d for some fixedd, and suppose that we have a
(possibly infinite) collectionF of functionsfi : U → U . Let

EF = {(x, y) ∈ U2 | ∃i : y = fi(x)}
Then(U,EF) can be seen as a directed graph on an infinite number of nodes. For any setS ⊆ U let
Γ(S) = {y ∈ U \ S | ∃x ∈ S : (x, y) ∈ EF} be the neighbor set ofS. We say that(U,EF) is
connectedif for every setS ⊂ U it holds thatΓ(S) 6= ∅.

Consider now any finite set of peersV , and letR(v) be the region inU that has been assigned to
peerv. Let GF (V) be the directed graph with node setV and edge set

E = {(v, w) ∈ V 2 | ∃x ∈ R(v)∃y ∈ R(w) : (x, y) ∈ EF}

2

Then it holds:

Lemma 8.3 If (U,EF) is connected and
⋃

v∈V R(v) = U , then alsoGF (V) is connected.

Proof. Suppose that(U,EF) is connected and
⋃

v∈V R(v) = U but GF (V) is not connected. Then
there must be a setV ′ ⊂ V that has no edge leaving it. LetR′ =

⋃
v∈V ′ R(v) andR′′ =

⋃
v∈V \V ′ R(v).

SinceΓ(R′) 6= ∅ andΓ(R′) ⊆ R′′, there must exist anx ∈ R′ and ay ∈ R′′ with (x, y) ∈ EF . Hence,
according to our definition ofGF (V), there must exist a nodev ∈ V ′ and a nodew ∈ V \ V ′ with
(v, w) ∈ E, contradicting our assumption. ut

Our goal will therefore be to make sure that
⋃

v∈V R(v) = U . When using the mapping strategy of
our hierarchical decomposition approach, this property is satisfied.

Putting the pieces together

Now we are ready to describe our general framework. Consider any spaceU = [0, 1)d and collection
of functionsF . Recall that for a peerv, R(v) is the subcube associated with the nodew in the
decomposition tree withtw = `′v. Our goal is to maintain the following invariants at any time.

Invariant 8.4 Every peerv in the system is connected to

• pred(v) andsucc(v) (the cycle edges) and

• all peersw with the property thatΓ(R(v)) ∩R(w) 6= ∅ (the edges of the graphGF (V))

Invariant 8.5 The supervisor is connected topred(v), v, succ(v), andsucc(succ(v)) wherev is the
peer with label̀ (n− 1).

It turns out that this is very easy.

Lemma 8.6 For any join or leave request, the supervisor has sufficient information to maintain In-
variant 8.4.

Proof. First, consider the situation that a new peerv joins the system. From the proof of Lemma 8.2 we
know thatpred(v) will cut its subcube, sayR, in half, keep one half, sayR1, and give the other half,R2,
to v. According to Invariant 8.4,v needs to establish connections to all peersw with Γ(R2)∩R(w) 6= ∅.
However, sinceR2 ⊆ R, pred(v) owns all of these connections beforev joins the system. Hence, all
the supervisor has to do is askpred(v) to move all those edges(pred(v), w) with Γ(R2) ∩ R(w) 6= ∅
to v. Thus, the connections that the supervisor has according to Invariant 8.5 suffice to do all updates.

Since the Leave operation is just the reverse of a Join operation, also Leave operations can be
executed with the connectivity information the supervisor has according to Invariant 8.5, under the
assumption that the leaving node passes all of its connections to the node taking over its place in the
cycle. ut

From the lemma it follows that, besides the supervisor being able to handle join and leave re-
quests with its limited information, the time and work the supervisor has to invest for these requests is
constant.

3

8.2 Examples

First, we show how to maintain a supervised hypercube. Recall the definition of a hypercube. Ac-
cording to this definition, every node with label(x1, . . . , xd) ∈ {0, 1}d is connected to the nodes
(x̄1, x2, . . . , xd), (x1, x̄2, x3, . . . , xd), . . ., (x1, . . . , xd−1, x̄d), wherex̄ = (1 + x) mod2. Consider now
the spaceU = [0, 1) and the collectionF = {f−i , f+

i : U → U | i ∈ IN} of functions

f−i (x) = (x− 1/2i) mod1 and f+
i (x) = (x + 1/2i) mod1 .

When interpreting every label(x1, . . . , xd) asx =
∑d

i=1 xi/2
i, then for every neighborx′ of x in the

hypercube there is a functionf ∈ F with f(x) = x′. More precisely, ifx andx′ only differ in theith
bit, then it holds:

• if xi = 1 thenx′ = f−i (x) and

• if xi = 0 thenx′ = f+
i (x).

From Lemma 8.6 it immediately follows:

Theorem 8.7 Using our framework, the supervisor can maintain a dynamic hypercube with work and
timeO(1) for each join and leave request.

Also a low degree and diameter and a high expansion can be maintained.

Theorem 8.8 Using our framework, it holds that at any time, the dynamic hypercube has an outdegree
of Θ(log n), a diameter ofO(log n) and an expansion ofΩ(1/ log n), wheren is the number of peers
in the system.

Proof. First, we bound the degree. According to Invariant 8.1, every peerv is responsible for an inter-
val R(v) of size in{1/n̄, 2/n̄} wheren̄ = 2blog nc. Using any functionf ∈ F , any intervalI is mapped
to an intervalf(I) of length the length ofI. Hence, when using the continuous-discrete approach for
the edges, every peer has at most two outgoing edges for every functionf ∈ F . Furthermore, once
i ≥ log n̄ + 1, the intervalf(I) is contained inR(pred(v)) ∪ R(v) ∪ R(succ(v)). Hence, every peer
has an outdegree of at most2(log n̄ + 1).

Next, we consider the diameter. Consider any two pointsx, y ∈ [0, 1). Let (x1, x2, . . .), (y1, y2, . . .)
∈ {0, 1}∗ be the binary representations ofx andy. UsingF , it takes at mostk traversals of edges to
adjust(x1, . . . , xk) to (y1, . . . , yk) in (U,EF). Since for every edge(x′, y′) ∈ EF there is an edge
(v′, w′) in GF with x′ ∈ R(v′) andy′ ∈ R(w′), it takes at mostlog n̄ + 2 edge traversals inGF to
get from the nodev owningx (i.e., x ∈ R(v)) to the nodew owningy (i.e., y ∈ R(w)). Hence, the
diameter of the dynamic hypercube isO(log n).

Finally, it is not difficult to see that if the peers are assigned to a single level of the decomposition
tree, say leveld, thenGF (V) contains as a subgraph thed-dimensional hypercube. Hence, because
the peers are only spread across two consecutive levels of the decomposition tree, the expansion of
GF (V) is at least half of the expansion of thelog n̄-dimensional hypercube, which isΩ(1/ log n). ut

Next, we show how to maintain a supervised de Bruijn network. Recall the definition of a de
Bruijn graph. In this definition, every node with label(x1, . . . , xd) ∈ {0, 1}d is connected to the nodes

4

(0, x1, . . . , xd) and(1, x1, . . . , xd). Consider now the spaceU = [0, 1) and the collectionF = {f0, f1}
of functions

f0(x) = x/2 and f1(x) = (1 + x)/2 .

When interpreting every label(x1, . . . , xd) asx =
∑d

i=1 xi/2
i, then these functions are a good ap-

proximation of the de Bruijn edges. In fact, ford → ∞ they match the de Bruijn edges. Hence, it
follows:

Theorem 8.9 Using our framework, the supervisor can maintain a dynamic de Bruijn network with
work and timeO(1) for each join and leave request.

Also, similar to Theorem 8.8 it holds:

Theorem 8.10 Using our framework, it holds that at any time, the dynamic de Bruijn network has an
outdegree ofO(1), a diameter ofO(log n) and an expansion ofΩ(1/ log n), wheren is the number of
peers in the system.

Proof. It is not difficult to check that whenever the peers are assigned to nodes in a single level of the
decomposition tree, say leveld, thenGF (V) is exactly equal to thed-dimentional de Bruijn graph. In
the worst case, the peers can only be distributed across two consecutive levels of the decomposition
tree, which implies the theorem. ut

Also dynamic versions of expander graphs can be constructed. Recall the Gabber-Galil graph in
Section. Here, we can setU = [0, 1)2 andF = {f1, f2} with

f1(x, y) = (x, (x + y) mod1) and f2(x, y) = ((x + y) mod1, x)

to obtain a continuous version of this graph. Also this version can be maintained with constant work
and time for the supervisor for each join and leave requests. Furthermore, the following result holds.

Theorem 8.11 Using our framework, it holds that at any time, the dynamic Gabber-Galil network
has an outdegree ofO(1), a diameter ofO(log n) and an expansion ofΘ(1), wheren is the number of
peers in the system.

Many more topologies are possible.

8.3 Robustness against random faults

So far we assumed that the peers leave gracefully, i.e., they announce their departures to the supervisor.
In reality, however, also ungraceful departures can occur. In this section we show how to handle this
case under the assumption that ungraceful departures are uniformly distributed over the cycle and the
rate of ungraceful departures is slow enough for the supervisor to handle. Towards this goal we require
the supervisor to maintain the following invariants for somek to be specified later.

Invariant 8.12 Every peerv in the system is connected to

• predi(v) andsucci(v) for everyi ∈ {1, . . . , k} and

5

• all peersw with the property thatΓ(R(Nv)) ∩R(Nw) 6= ∅
whereNv = {v} ∪ {predi(v) | i ∈ {1, . . . , k}} ∪ {succi(v) | i ∈ {1, . . . , k}} and for any setV ′ ⊆ V ,
R(V ′) =

⋃
v∈V ′ R(v).

That is, now we have some redundancy in the system, since every peer takes care of all the edges
in its k-neighborhood.

Invariant 8.13 The supervisor maintainsjoin connectionsandrepair connections.

• Join connections are tov, the2k closest predecessors ofv and the3k closest successors ofv
wherev is the peer with label̀(n− 1).

• Repair connections are to some (missing or fixed) peerw, thek closest predecessors ofw and
thek closest successors ofw.

The join connections are used for the peers that want to join the system, and the repair connections
are used to refill the positions of peers that have left the system in an ungraceful manner.

The join operation works as for graceful departures. Whenever a new peer joins the system, the
supervisor introduces it to existing peers so that its and the existing peers’ connections satisfy Invari-
ant 8.4. Afterwards, the supervisor requests new connections so that it can maintain its own invariant.
The only difference to the graceful case is that whenever a peer is missing, it is ignored by the super-
visor. Missing peers are exclusively handled by its repair connections.

The leave operation works in a way that the gracefully leaving peerw tells the supervisor all of
its connections so that the supervisor can reverse the last join operation and can use the peer in that
operation to fill the position ofw. Missing peers are ignored and left to the repair connections.

The repair connections work as follows. Suppose the repair connections are currently centered
around some intact peerw. If at least one of thek closest successors ofw is missing, then choose the
closest one as the new peerw, request the missing successors of it, and execute the Leave operation
for w (which can be executed by the supervisor because all connectivity information ofw is available).
Otherwise, wait until the first successor ofw leaves and then do the same as above.

These rules have the following property.

Theorem 8.14 If k = Θ(log n) is sufficiently large and ungraceful departures are distributed uni-
formly at random on the cycle and the rate of departures is low enough so that they can be handled
by the supervisor, then for any(U, F) in our framework the supervisor can maintain a graph in which
every(x, y) ∈ EF has at least one pair of working peers(v, w) so thatx ∈ R(Nv), y ∈ R(Nw) andv
has an edge tow.

Proof. (Sketch) We need to show two lemmas.

Lemma 8.15 In one round through the cycle, the repair connections handle all ungraceful departures
that happened up to the beginning of that round.

Proof. At any time, the supervisor knows exactly which positions in the cycle should be occupied,
which are those positions with labels`(0), . . . , `(n − 1). Hence, the supervisor can determine the
positions with missing peers and repair them. Since the supervisor always repairs the closest missing

6

successor, on its tour around the cycle, it will not leave out any position the a peer that left in an
ungraceful way before the beginning of the tour. ut

In the following, a position on the cycle is calledvalid if it is associated with a label in{`(0), . . . ,
`(n− 1)}.

Lemma 8.16 Suppose that every peer fails with a constant probability0 < p < 1. Then there is an
s = Θ(p−1 log n) so that for every sequence ofs consecutive valid positions, the probability that all
or none of them have a failed peer is polynomially small inn.

Proof. Consider some fixed sequence ofs consecutive valid positions. The probability that all of them
have a failed peer is equal to

ps ≤ n−c

if s ≥ (c log n)/ log p, and the probability the none of them have a failed peer is equal to

(1− p)s ≤ n−c′

if s ≥ (c′ log n)/ log(1 − p). Since0 < p < 1, there is ans = Θ(log n) so that both probabilities
are polynomially small inn. In this case, the probability is also polynomially small inn that there is
any sequence ofs consecutive valid positions where all or none of them have a failed peer, proving the
lemma. ut

Suppose that in the time it takes for the supervisor to perform a complete tour around the cycle
with its repair connectionswithoutwaiting for failures, at most anε fraction of the peers can fail for
some sufficiently small constantε > 0. Then Lemma 8.16 implies that every repair tour through
the cycle with waiting for failures takes an amount of time in which at most a constant fraction of
the peers fail, with high probability. Since all previous failures have been handled by previous repair
tours, failures can be kept at a constant fraction so that the supervisor can keep up with the failures,
with high probability. In this case, it holds that for any sequence ofk consecutive valid positions at
least one of them is occupied by a work peer, which implies that every(x, y) ∈ EF has at least one
pair of working peers(v, w) so thatx ∈ R(Nv), y ∈ R(Nw) andv has an edge tow.

(A more formal proof will be given here in the future.) ut

8.4 Robustness against adversarial behavior

When considering adaptive adversarial attacks, it does not suffice that the supervisor maintain infor-
mation as in the previous subsection as the adversary can place nodes at critical positions to effectively
disconnect the supervisor from the network or disrupt routing.

Formally, we allow the adversary to own up toεn of the n nodes in the system for some suffi-
ciently small constantε > 0. These nodes are also calledadversarialnodes and the rest are called
honestnodes. The supervisor and the honest nodes are oblivious to adversarial nodes, i.e., there is no
mechanism to distinguish at any time whether a particular node is honest or not. To achieve robustness
in the presence of an adaptive adversary, we use the following scheme.

In the following, aregion is an interval of size1/2i in [0, 1) starting at an integer multiple of
1/2i for somei ≥ 0, and a nodev belongs to a regionR if r(`v) ∈ R. Recall thatn = 2blog nc.
The supervisor organizes the nodes into non-overlappingquorum regionsso that each region contains

7

betweenc log n and2c log n nodes for some constantc > 1. Whenever these bounds are violated in
a quorum region, the supervisor splits it or merges it with a neighboring region. Then nodes are also
organized into 5 setsS1 to S5 and the following invariant is maintained for these sets.

Invariant 8.17 At all times,

1. S1 hasn̄/8 nodes with labels̀(0), · · · , `(n/8− 1).

2. S2 hasn/8 nodes with labels̀(n/8), · · · , `(n/4− 1).

3. S3 hasn/4 nodes with labels̀(n/4), · · · , `(n/2− 1).

4. S4 hasn/2 nodes with labels̀(n/2), · · · , `(n− 1).

5. S5 has the remainingn− n nodes with labels̀(n), · · · , `(n− 1).

The following invariants describe the connections maintained by the nodes in the various sets and
the connections maintained by the supervisor. To simplify notation, for a real numberx ∈ [0, 1),
R(x) is the quorum region thatx belongs to andSi(R) is the set ofSi-nodes belonging toR. For
every quorum regionR, let SR = S1(R) ∪ S2(R) andS̄R = S3(R) ∪ S4(R) ∪ S5(R) if R precedes
R(r(`(n− 1))), and otherwise,SR = S1(R) andS̄R = S2(R) ∪ S3(R) ∪ S4(R) ∪ S5(R).

Invariant 8.18 For all quorum regionsR, everySR-node is connected to all nodes inSR ∪ S̄R.
Every SR-node is also connected to all nodes in the predecessor and successor regions ofR, de-
notedpred(R) andsucc(R), and for everyu ∈ SR that has a connection to a nodev ∈ SR′ according
to the continuous-discrete approach, allSR-nodes are connected to allSR′-nodes.

Invariant 8.19 The supervisor maintainsjoin connectionsandmixing connections.

• Join connections are to all the nodes inSR in the regionsR(r(`(n− 1))), pred(R(r(`(n− 1))))
andsucc(R(r(`(n− 1)))).

• Mixing connections are to all nodes inS1(R), S2(R) andS3(R) for some quorum regionR. The
supervisor also has some special connection to a marked nodev̂ ∈ S1(R) ∪ S2(R) ∪ S3(R).

The setS1 is referred to as thestableset. The goal of the supervisor is to have the honest nodes
in the majority in every setS1(R), with high probability, since then quorum strategies can be used
to wash out adversarial behavior. The setS2 is in a stage called thesplit-and-mergestage because
S2-nodes are merged into the stable set or removed from it as nodes join or leave the system. The set
S3 is in a stage calledmixingstage in which the supervisor performs random transpositions to ensure
that the nodes are well-mixed before being integrated into the stable set. The setS4 is in a reservoir
stage.S4 is used to fill departed positions in the setsS1 to S3 by selecting random nodes inS4 and
filling their positions with the last nodes inS5. Finally, the setS5 is in afilling stage where new nodes
are added by assigning them the label`(n− 1).

The join and leave operations are extended as follows.

8

Join operation

The supervisor assigns to the new nodev the label`(n) and integrates it so that the Invariants 8.17
and 8.18 are satisfied. Afterwards, the supervisor takes the closest successor ofv̂ among the nodes in
S1(R)∪S2(R)∪S3(R) of the mixing regionR and calls this node the neŵv. If there is no such node,
the supervisor moves to the quorum regionR′ succeeding the regionR and assigned̂v to the first node
in S1(R

′)∪S2(R
′)∪S3(R

′). Suppose that the neŵv belongs toSi. Then the supervisor chooses a node
w with position between̂v (inclusive) and 1 (exclusive) uniformly at random and exchanges (or more
precisely, asks the current mixing region to exchange) the positions ofv̂ andw. The supervisor finally
updates its connections so that Invariant 8.19 is satisfied. Each time a new node causes the supervisor
to switch from a join regionR to succ(R), the nodes inS2(R) are merged intoS1(R) as prescribed by
Invariant 8.18.

Leave operation

If a nodev leaves withv ∈ S4∪S5, the supervisor simply replaces it by the last node inS5. Otherwise,
the supervisor replacesv by a random node inS4 (resp. orders the current join region to do this) which
is replaced by the last node inS5, and the supervisor performs a mixing operation in the current mixing
region in the same way as for a join operation. (The supervisor initiates the leave operation forv only
if a majority of S1-nodes inv’s region notify it about that. In this case, the supervisor can be sure
thatv has indeed left so that it correctly initiatesv’s replacement.) Each time a departure causes the
supervisor to switch from a regionR to pred(R), the nodes inS2(pred(R)) are split away fromS1(R)
as prescribed by Invariant 8.18.

These operations yield the following result.

Theorem 8.20 For a sufficiently small constantε > 0 it holds that as long as the adversary owns
at mostεn nodes, the above scheme guarantees that in every regionR, the honest nodes are in the
majority inS1(R), with high probability.

Proof. (Sketch) The following lemma is crucial for the theorem.

Lemma 8.21 Once a pass has been made through all positions ofSi, i ∈ {1, 2, 3}, the positions inSi

form a random permutation.

Proof. Givenm positions, consider the random experiment of first switching the first position with
a position in{1, . . . , m} chosen uniformly at random, then switching position 2 with a position in
{2, . . . , n} uniformly at random, and so on, until positionm is reached. This random experiment
creates a random permutation of them positions for the following reasons:

• Every permutation has exactly one outcome of the random experiment.

• Every outcome of the random experiment is equally probable.

ut

Hence, it takes at mostn join and leave operations (wheren is the initial number of nodes) until all
nodes inS1, S2 andS3 that were initially around are randomly permuted. For every new node inS1, S2

9

andS3 a random node inS4 is picked, which is adversarial with probability at most(εn)/(n̄/2) ≤ 4ε.
In the worst case, all honest nodes inS3 leave and the adversarial nodes stay. In this case, a simple
probability analysis can show that as long asε > 0 is a sufficiently small constant, the adversarial
nodes will not be in the majority in any quorum region.

If in every quorum region the honest nodes inS1 are in the majority, then adversarial behavior can
be washed out in all operations so that the supervised overlay network works correctly. ut

8.5 Applications

Finally, we discuss some applications of the supervised overlay networks that arise in the area of
distributed computing.

Grid Computing

Recently, many systems such as SETI@home [6], Folding@home [2], and Distributed.net [1] have
been proposed for distributed computing. A main drawback of such systems is that the topology of
the system is a star graph with the central server maintaining a direct connection to each client. Such
a topology imposes heavy demands on the central server. Instead, we can use our general framework
for supervised overlay networks to maintain an overlay network for distributed computing. Peer-to-
peer connections allow subtasks to be spawned without the involvement of the supervisor so that the
demands on the server can be significantly reduced. This is particularly interesting for distributed
branch-and-bound computations as was discussed in [5].

WebTv

Our approach can also be used in Internet applications such as WebTv. In such an application, there are
typically various channels that users can browse or watch while being connected to the Internet. The
number of channels ranges in the scale of hundreds while the number of users can range in the scale
of millions. Such a system should allow users to quickly zap through channels. Hence, such a system
should allow for rapid integration and be scalable to a large number of users. Our supervised overlay
networks can easily achieve such a smooth operation. Suppose that every channel has a supervisor,
each supervisor maintains its own broadcast network, and the supervisors form a clique. Then it fol-
lows from our supervised approach, which can handle join and leave operations in constant time, that
users browsing through channels can be moved between the networks in a very fast way, comparable
to server-based networks, so that users only experience an insignificant delay.

Massive multi-player online gaming

Distributed architectures for massive multi-player online gaming (MMOG) have only recently been
studied formally (see e.g., [3]). The basic requirements of such a system includes authentication,
scalability, and rapid integration. Traditionally, such systems have been managed by a central server
that takes care of the overall system with limited communication between the users. Certainly, such a
system will not be scalable and also might experience heavy congestion at the central server. Hence,
distributed architectures are required at a certain scale. A supervised overlay network approach can
help here. For example, in a large virtual world, every supervisor may be responsible for a certain

10

part of the world, and the supervisors may be interconnected like a cellular network to allow a fast
handover process between them. Each supervisor then takes care of the peers currently exploring its
part of the world. Since in our supervised approach peers can quickly be integrated and removed from
a network, the handover process can be realized in a very fast way so that even fast moving peers
can be handled. Additional supervisors may also be used for load balancing purposes in a sense that
whenever a supervisor is heavily loaded, other supervisors may help out by taking over some of its
peers and/or parts of the virtual world. In this way, it should be possible to create new generations of
games in very complex worlds.

References

[1] Distributed.net. Available at http://www.distributed.net/.

[2] Folding@home. Available at http://folding.stanford.edu/.

[3] C. GauthierDickey, D. Zappala, and V. Lo. A fully distributed architecture for massively multiplayer online
games. InACM Workshop on Network and System Support for Games, 2004.

[4] M. Naor and U. Wieder. Novel architectures for P2P applications: the continuous-discrete approach. In
Proc. of the 15th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pages 50–59, 2003.

[5] C. Riley and C. Scheideler. A distributed hash table for computational grids. In18th Int. Parallel and
Distributed Processing Symposium (IPDPS), 2004.

[6] SETI@home. Available at http://setiathome.berkeley.edu/.

11

