
Part IV

Flows and Cuts

© Harald Räcke 389

10 Introduction

Flow Network

ñ directed graph G = (V , E); edge capacities c(e)
ñ two special nodes: source s; target t;
ñ no edges entering s or leaving t;
ñ at least for now: no parallel edges;

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

15

15

10

10

10

10 Introduction

© Harald Räcke 390

Cuts

Definition 1

An (s, t)-cut in the graph G is given by a set A ⊂ V with s ∈ A
and t ∈ V \A.

Definition 2

The capacity of a cut A is defined as

cap(A,V \A) :=
∑

e ∈ out(A)
c(e) ,

where out(A) denotes the set of edges of the form A× V \A
(i.e. edges leaving A).

Minimum Cut Problem: Find an (s, t)-cut with minimum

capacity.

10 Introduction

© Harald Räcke 391

Cuts

Example 3

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

15

15

10

10

10

A

The capacity of the cut is cap(A,V \A) = 28.

10 Introduction

© Harald Räcke 392

Flows

Definition 4

An (s, t)-flow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
e∈out(v)

f(e) =
∑

e∈into(v)
f(e) .

(flow conservation constraints)

10 Introduction

© Harald Räcke 393

Flows

Definition 5

The value of an (s, t)-flow f is defined as

val(f) =
∑

e∈out(s)
f(e) .

Maximum Flow Problem: Find an (s, t)-flow with maximum

value.

10 Introduction

© Harald Räcke 394

Flows

Example 6

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4|4

6|9

0|15

0|4

8|8

11|30

1|6

0|15

0|15

6|10

8|10

10|10

The value of the flow is val(f) = 24.

10 Introduction

© Harald Räcke 395

Flows

Lemma 7 (Flow value lemma)

Let f be a flow, and let A ⊆ V be an (s, t)-cut. Then the net-flow

across the cut is equal to the amount of flow leaving s, i.e.,

val(f) =
∑

e∈out(A)
f(e)−

∑
e∈into(A)

f(e) .

10 Introduction

© Harald Räcke 396

Proof.

val(f) =
∑

e∈out(s)
f(e)

=
∑

e∈out(s)
f(e)+

∑
v∈A\{s}

(∑
e∈out(v)

f(e)−
∑

e∈in(v)
f(e)

)

=
∑

e∈out(A)
f(e)−

∑
e∈into(A)

f(e)

The last equality holds since every edge with both end-points in

A contributes negatively as well as positively to the sum in

Line 2. The only edges whose contribution doesn’t cancel out

are edges leaving or entering A.

10 Introduction

© Harald Räcke 397

Example 8

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4|4

6|9

0|15

0|4

8|8

11|30

1|6

0|15

0|15

6|10

8|10

10|10

A

10 Introduction

© Harald Räcke 398

Corollary 9

Let f be an (s, t)-flow and let A be an (s, t)-cut, such that

val(f) = cap(A,V \A).

Then f is a maximum flow.

Proof.

Suppose that there is a flow f ′ with larger value. Then

cap(A,V \A) < val(f ′)

=
∑

e∈out(A)
f ′(e)−

∑
e∈into(A)

f ′(e)

≤
∑

e∈out(A)
f ′(e)

≤ cap(A,V \A)

10 Introduction

© Harald Räcke 399

11 Augmenting Path Algorithms
Greedy-algorithm:

ñ start with f(e) = 0 everywhere

ñ find an s-t path with f(e) < c(e) on every edge

ñ augment flow along the path

ñ repeat as long as possible

0
20

|20

0
20

|30

0
20

|20

s

1

2

t

0|10

0|10

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 400

The Residual Graph

From the graph G = (V , E, c) and the current flow f we construct

an auxiliary graph Gf = (V , Ef , cf) (the residual graph):

ñ Suppose the original graph has edges e1 = (u,v), and

e2 = (v,u) between u and v.

ñ Gf has edge e′1 with capacity max{0, c(e1)− f(e1)+ f(e2)}
and e′2 with with capacity max{0, c(e2)− f(e2)+ f(e1)}.

G

Gf

u v

u v

10|20
14|16

24
12

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 401

Augmenting Path Algorithm

Definition 10

An augmenting path with respect to flow f , is a path from s to t
in the auxiliary graph Gf that contains only edges with non-zero

capacity.

Algorithm 1 FordFulkerson(G = (V , E, c))
1: Initialize f(e)← 0 for all edges.

2: while ∃ augmenting path p in Gf do

3: augment as much flow along p as possible.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 402

Augmenting Path Algorithm

Animation for augmenting path

algorithms is only available in the

lecture version of the slides.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 403

Augmenting Path Algorithm

Theorem 11

A flow f is a maximum flow iff there are no augmenting paths.

Theorem 12

The value of a maximum flow is equal to the value of a minimum

cut.

Proof.

Let f be a flow. The following are equivalent:

1. There exists a cut A,B such that val(f) = cap(A, B).

2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f .

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 404

Augmenting Path Algorithm

1. =⇒ 2.

This we already showed.

2. =⇒ 3.

If there were an augmenting path, we could improve the flow.

Contradiction.

3. =⇒ 1.

ñ Let f be a flow with no augmenting paths.

ñ Let A be the set of vertices reachable from s in the residual

graph along non-zero capacity edges.

ñ Since there is no augmenting path we have s ∈ A and t ∉ A.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 405

Augmenting Path Algorithm

val(f) =
∑

e∈out(A)
f(e)−

∑
e∈into(A)

f(e)

=
∑

e∈out(A)
c(e)

= cap(A,V \A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the

second exploits the fact that the flow along incoming edges

must be 0 as the residual graph does not have edges leaving A.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 406

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity cf (e) remains

integral troughout the algorithm.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 407

Lemma 13

The algorithm terminates in at most val(f∗) ≤ nC iterations,

where f∗ denotes the maximum flow. Each iteration can be

implemented in time O(m). This gives a total running time of

O(nmC).

Theorem 14

If all capacities are integers, then there exists a maximum flow

for which every flow value f(e) is integral.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 408

A Bad Input

Problem: The running time may not be polynomial.

s

1

2

t

0|2000 0|2000

0|1

0|2000 0|2000

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 409

A Bad Input

Problem: The running time may not be polynomial.

s

1

2

t

2000

0

2000

0

2000

0

2000

0

1

0

Question:

Can we tweak the algorithm so that the running time is

polynomial in the input length?
See the lecture-version of the slides for
the animation.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 410

A Pathological Input

Let r = 1
2(
√

5− 1). Then rn+2 = rn − rn+1.

s

2

3

4

5

6

7

t

∞

∞
∞∞

∞
∞

∞
∞

∞ ∞

∞

∞

∞

∞

∞

∞
∞

∞
∞

∞

∞

∞

∞

1

r

r2

r2

0

r + r2

0

r2

r

r2

0

r3

r4

r3

0

Running time may be infinite!!!
See the lecture-version of the slides for
the animation.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 411

How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.

11.1 The Generic Augmenting Path Algorithm

© Harald Räcke 412

Overview: Shortest Augmenting Paths

Lemma 15

The length of the shortest augmenting path never decreases.

Lemma 16

After at most O(m) augmentations, the length of the shortest

augmenting path strictly increases.

11.2 Shortest Augmenting Paths

© Harald Räcke 413

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 17

The shortest augmenting path algorithm performs at most

O(mn) augmentations. This gives a running time of O(m2n).

Proof.

ñ We can find the shortest augmenting paths in time O(m)
via BFS.

ñ O(m) augmentations for paths of exactly k < n edges.

11.2 Shortest Augmenting Paths

© Harald Räcke 414

Shortest Augmenting Paths

Define the level `(v) of a node as the length of the shortest s-v
path in Gf .

Let LG denote the subgraph of the residual graph Gf that

contains only those edges (u,v) with `(v) = `(u)+ 1.

A path P is a shortest s-u path in Gf if it is a an s-u path in LG.

Gf
LG

s

2

3

4

5 t

10

0
6

2

10
0

2

0

9
0

10
0

6

0
10

0

4
0

11.2 Shortest Augmenting Paths

© Harald Räcke 415

In the following we assume that the residual graph Gf does not

contain zero capacity edges.

This means, we construct it in the usual sense and then delete

edges of zero capacity.

11.2 Shortest Augmenting Paths

© Harald Räcke 416

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.

After an augmentation Gf changes as follows:

ñ Bottleneck edges on the chosen path are deleted.

ñ Back edges are added to all edges that don’t have back

edges so far.

These changes cannot decrease the distance between s and t.

Gf
LG

s

2

3

4

5 t

10

0
6

2

101
09

2

0

90
09

101
09

6

0
10

0

4
0

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of

the shortest augmenting path strictly increases.

Let EL denote the set of edges in graph LG at the beginning of a

round when the distance between s and t is k.

An s-t path in Gf that uses edges not in EL has length larger

than k, even when considering edges added to Gf during the

round.

In each augmentation one edge is deleted from EL.

Gf
EL

s

2

3

4

5 t

10

0
6

2

101
09

2

0

90
09

101
09

6

0
10

0

4
0

Shortest Augmenting Paths

Theorem 18

The shortest augmenting path algorithm performs at most

O(mn) augmentations. Each augmentation can be performed in

time O(m).

Theorem 19 (without proof)

There exist networks with m = Θ(n2) that require O(mn)
augmentations, when we restrict ourselves to only augment

along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a

maximum flow (why?).

11.2 Shortest Augmenting Paths

© Harald Räcke 419

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve

(asymptotically) on the number of augmentations.

However, we can improve the running time to O(mn2) by

improving the running time for finding an augmenting path

(currently we assume O(m) per augmentation for this).

11.2 Shortest Augmenting Paths

© Harald Räcke 420

Shortest Augmenting Paths

We maintain a subset EL of the edges of Gf with the guarantee

that a shortest s-t path using only edges from EL is a shortest

augmenting path.

With each augmentation some edges are deleted from EL.

When EL does not contain an s-t path anymore the distance

between s and t strictly increases.

Note that EL is not the set of edges of the level graph but a

subset of level-graph edges.

11.2 Shortest Augmenting Paths

© Harald Räcke 421

Suppose that the initial distance between s and t in Gf is k.

EL is initialized as the level graph LG.

Perform a DFS search to find a path from s to t using edges from

EL.

Either you find t after at most n steps, or you end at a node v
that does not have any outgoing edges.

You can delete incoming edges of v from EL.

11.2 Shortest Augmenting Paths

© Harald Räcke 422

Let a phase of the algorithm be defined by the time between two

augmentations during which the distance between s and t
strictly increases.

Initializing EL for the phase takes time O(m).

The total cost for searching for augmenting paths during a

phase is at most O(mn), since every search (successful (i.e.,

reaching t) or unsuccessful) decreases the number of edges in

EL and takes time O(n).

The total cost for performing an augmentation during a phase is

only O(n). For every edge in the augmenting path one has to

update the residual graph Gf and has to check whether the edge

is still in EL for the next search.

There are at most n phases. Hence, total cost is O(mn2).

11.2 Shortest Augmenting Paths

© Harald Räcke 423

How to choose augmenting paths?

ñ We need to find paths efficiently.

ñ We want to guarantee a small number of iterations.

Several possibilities:

ñ Choose path with maximum bottleneck capacity.

ñ Choose path with sufficiently large bottleneck capacity.

ñ Choose the shortest augmenting path.

11.3 Capacity Scaling

© Harald Räcke 424

Capacity Scaling
Intuition:

ñ Choosing a path with the highest bottleneck increases the

flow as much as possible in a single step.

ñ Don’t worry about finding the exact bottleneck.

ñ Maintain scaling parameter ∆.

ñ Gf (∆) is a sub-graph of the residual graph Gf that contains

only edges with capacity at least ∆.

Gf Gf (99)

s

1

2

t s

1

2

t

115

0

133
0

870

202

0

1

0

115

133
202

11.3 Capacity Scaling

© Harald Räcke 425

Capacity Scaling

Algorithm 2 maxflow(G, s, t, c)
1: foreach e ∈ E do fe ← 0;

2: ∆← 2dlog2 Ce

3: while ∆ ≥ 1 do

4: Gf (∆)← ∆-residual graph

5: while there is augmenting path P in Gf (∆) do

6: f ← augment(f , c, P)
7: update(Gf (∆))
8: ∆← ∆/2
9: return f

11.3 Capacity Scaling

© Harald Räcke 426

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the

algorithm.

Correctness:

The algorithm computes a maxflow:

ñ because of integrality we have Gf (1) = Gf
ñ therefore after the last phase there are no augmenting

paths anymore

ñ this means we have a maximum flow.

11.3 Capacity Scaling

© Harald Räcke 427

Capacity Scaling

Lemma 20

There are dlogCe iterations over ∆.

Proof: obvious.

Lemma 21

Let f be the flow at the end of a ∆-phase. Then the maximum

flow is smaller than val(f)+m∆.

Proof: less obvious, but simple:

ñ There must exist an s-t cut in Gf (∆) of zero capacity.

ñ In Gf this cut can have capacity at most m∆.

ñ This gives me an upper bound on the flow that I can still

add.

11.3 Capacity Scaling

© Harald Räcke 428

Capacity Scaling

Lemma 22

There are at most 2m augmentations per scaling-phase.

Proof:

ñ Let f be the flow at the end of the previous phase.

ñ val(f∗) ≤ val(f)+ 2m∆
ñ Each augmentation increases flow by ∆.

Theorem 23

We need O(m logC) augmentations. The algorithm can be

implemented in time O(m2 logC).

11.3 Capacity Scaling

© Harald Räcke 429

Matching
ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃

12.1 Matching

© Harald Räcke 431

Bipartite Matching

ñ Input: undirected, bipartite graph G = (L] R,E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

1

2

3

4

5

L R

1̃

2̃

3̃

4̃

5̃

12.1 Matching

© Harald Räcke 432

Maxflow Formulation
ñ Input: undirected, bipartite graph G = (L] R] {s, t}, E′).
ñ Direct all edges from L to R.
ñ Add source s and connect it to all nodes on the left.
ñ Add t and connect all nodes on the right to t.
ñ All edges have unit capacity.

s t

1

2

3

4

5
L R

1̃

2̃

3̃

4̃

5̃

12.1 Matching

© Harald Räcke 433

Proof

Max cardinality matching in G ≤ value of maxflow in G′

ñ Given a maximum matching M of cardinality k.

ñ Consider flow f that sends one unit along each of k paths.

ñ f is a flow and has cardinality k.

s t

1

2

3

4

5L R
G′

1̃

2̃

3̃

4̃

5̃

1

2

3

4

5L R
G

1̃

2̃

3̃

4̃

5̃

12.1 Matching

© Harald Räcke 434

Proof
Max cardinality matching in G ≥ value of maxflow in G′

ñ Let f be a maxflow in G′ of value k
ñ Integrality theorem ⇒ k integral; we can assume f is 0/1.

ñ Consider M= set of edges from L to R with f(e) = 1.

ñ Each node in L and R participates in at most one edge in M.

ñ |M| = k, as the flow must use at least k middle edges.

s t

1

2

3

4

5L R
G′

1̃

2̃

3̃

4̃

5̃

1

2

3

4

5L R
G

1̃

2̃

3̃

4̃

5̃

12.1 Matching

© Harald Räcke 435

12.1 Matching

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
ñ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).

A graph is a unit capacity simple graph if

ñ every edge has capacity 1

ñ a node has either at most one leaving edge or at most
one entering edge

12.1 Matching

© Harald Räcke 436

Baseball Elimination

team wins losses remaining games

i wi `i Atl Phi NY Mon

Atlanta 83 71 − 1 6 1
Philadelphia 80 79 1 − 0 2
New York 78 78 6 0 − 0
Montreal 77 82 1 2 0 −

Which team can end the season with most wins?

ñ Montreal is eliminated, since even after winning all remaining
games there are only 80 wins.

ñ But also Philadelphia is eliminated. Why?

12.2 Baseball Elimination

© Harald Räcke 437

Baseball Elimination

Formal definition of the problem:

ñ Given a set S of teams, and one specific team z ∈ S.

ñ Team x has already won wx games.

ñ Team x still has to play team y, rxy times.

ñ Does team z still have a chance to finish with the most

number of wins.

12.2 Baseball Elimination

© Harald Räcke 438

Baseball Elimination

Flow network for z = 3. M is number of wins Team 3 can still

obtain.

s t

1

2

4

5

1-2

1-4

1-5

2-4

2-5

4-5

r12

r14

r15

r24

r25
r
45

M − w
1

M − w2

M − w4

M
− w

5

∞

Idea. Distribute the results of remaining games in such a way

that no team gets too many wins.

12.2 Baseball Elimination

© Harald Räcke 439

Certificate of Elimination

Let T ⊆ S be a subset of teams. Define

w(T) :=
∑
i∈T
wi, r (T) :=

∑
i,j∈T ,i<j

rij

If w(T)+r(T)|T | > M then one of the teams in T will have more than

M wins in the end. A team that can win at most M games is

therefore eliminated.

wins of
teams in T

remaining games
among teams in T

12.2 Baseball Elimination

© Harald Räcke 440

Theorem 24

A team z is eliminated if and only if the flow network for z does

not allow a flow of value
∑
ij∈S\{z},i<j rij.

Proof (⇐)

ñ Consider the mincut A in the flow network. Let T be the set

of team-nodes in A.

ñ If for node x-y not both team-nodes x and y are in T , then

x-y ∉ A as otw. the cut would cut an infinite capacity edge.

ñ We don’t find a flow that saturates all source edges:

r(S \ {z}) > cap(A,V \A)
≥

∑
i<j: i∉T∨j∉T

rij +
∑
i∈T
(M −wi)

≥ r(S \ {z})− r(T)+ |T |M −w(T)

ñ This gives M < (w(T)+ r(T))/|T |, i.e., z is eliminated.

Baseball Elimination

Proof (⇒)

ñ Suppose we have a flow that saturates all source edges.

ñ We can assume that this flow is integral.

ñ For every pairing x-y it defines how many games team x
and team y should win.

ñ The flow leaving the team-node x can be interpreted as the

additional number of wins that team x will obtain.

ñ This is less than M −wx because of capacity constraints.

ñ Hence, we found a set of results for the remaining games,

such that no team obtains more than M wins in total.

ñ Hence, team z is not eliminated.

12.2 Baseball Elimination

© Harald Räcke 442

Project Selection

Project selection problem:

ñ Set P of possible projects. Project v has an associated profit

pv (can be positive or negative).

ñ Some projects have requirements (taking course EA2

requires course EA1).

ñ Dependencies are modelled in a graph. Edge (u,v) means

“can’t do project u without also doing project v.”

ñ A subset A of projects is feasible if the prerequisites of

every project in A also belong to A.

Goal: Find a feasible set of projects that maximizes the profit.

12.3 Project Selection

© Harald Räcke 443

Project Selection

The prerequisite graph:

ñ {x,a, z} is a feasible subset.

ñ {x,a} is infeasible.

z

a x

z

a x

12.3 Project Selection

© Harald Räcke 444

Project Selection

Mincut formulation:

ñ Edges in the prerequisite graph get infinite capacity.

ñ Add edge (s, v) with capacity pv for nodes v with positive

profit.

ñ Create edge (v, t) with capacity −pv for nodes v with

negative profit.

prerequisite graph

s t

u z

v w

a x

∞

pu

pv

pa

−pz

−pw

−px

12.3 Project Selection

© Harald Räcke 445

Theorem 25

A is a mincut if A \ {s} is the optimal set of projects.

Proof.

ñ A is feasible because of capacity infinity edges.
ñ cap(A,V \A) =

∑
v∈Ā:pv>0

pv +
∑

v∈A:pv<0

(−pv)

=
∑

v :pv>0

pv −
∑
v∈A

pv

prerequisite graph

s t

u z

v w

a x

∞

pu

pv

pa

−pz

−pw

−px

∑
v∈Ā:pv>0

pv
∑

v∈Ā:pv>0

pv

For the formula we
define ps := 0.

The step follows by
adding

∑
v∈A:pv>0 pv−∑

v∈A:pv>0 pv = 0.

Note that minimizing
the capacity of the cut
(A,V \A) corresponds
to maximizing profits
of projects in A.

Preflows

Definition 26

An (s, t)-preflow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
e∈out(v)

f(e)≤
∑

e∈into(v)
f(e) .

13.1 Generic Push Relabel

© Harald Räcke 447

Preflows

Example 27

s

2

3

4

5

6

7

t

10|10

3|5

11|15

4|4

0|9

0|15

0|4

0|8

11|30

1|6

0|15

0|15

0|10

0|10

0|10

A node that has
∑
e∈out(v) f(e)<

∑
e∈into(v) f(e) is called an

active node.

13.1 Generic Push Relabel

© Harald Räcke 448

Preflows

Definition:

A labelling is a function ` : V → N. It is valid for preflow f if

ñ `(u) ≤ `(v)+ 1 for all edges (u,v) in the residual graph

Gf (only non-zero capacity edges!!!)

ñ `(s) = n
ñ `(t) = 0

Intuition:

The labelling can be viewed as a height function. Whenever the

height from node u to node v decreases by more than 1 (i.e., it

goes very steep downhill from u to v), the corresponding edge

must be saturated.

13.1 Generic Push Relabel

© Harald Räcke 449

Preflows

G

Gf

s

2

3

4

5 t

s

2

3

4

5 t

6 0

0 0

0 0

6 0

20|0

10|0

0|0

0|0

20|20 0|8

0|8

0|2

0|910|10

0|6 0|5

0|4

0

20
8

0

8
0

2

0

9
0

0
10

6

0 5
0

4
0

13.1 Generic Push Relabel

© Harald Räcke 450

Preflows

Lemma 28

A preflow that has a valid labelling saturates a cut.

Proof:

ñ There are n nodes but n+ 1 different labels from 0, . . . , n.

ñ There must exist a label d ∈ {0, . . . , n} such that none of

the nodes carries this label.

ñ Let A = {v ∈ V | `(v) > d} and B = {v ∈ V | `(v) < d}.
ñ We have s ∈ A and t ∈ B and there is no edge from A to B

in the residual graph Gf ; this means that (A, B) is a

saturated cut.

Lemma 29

A flow that has a valid labelling is a maximum flow.

13.1 Generic Push Relabel

© Harald Räcke 451

Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation
constraints in which case we can conclude that we have a maximum flow.

13.1 Generic Push Relabel

© Harald Räcke 452

Changing a Preflow
An arc (u,v) with cf (u,v) > 0 in the residual graph is

admissable if `(u) = `(v)+ 1 (i.e., it goes downwards w.r.t.

labelling `).

The push operation

Consider an active node u with excess flow

f(u) =∑e∈into(u) f(e)−
∑
e∈out(u) f(e) and suppose e = (u,v)

is an admissable arc with residual capacity cf (e).

We can send flow min{cf (e), f (u)} along e and obtain a new

preflow. The old labelling is still valid (!!!).

ñ saturating push: min{f(u), cf (e)} = cf (e)
the arc e is deleted from the residual graph

ñ non-saturating push: min{f(u), cf (e)} = f(u)
the node u becomes inactive

Note that a push-operation may be
saturating and non-saturating at
the same time.

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing

admissable arc.

Increasing the label of u by 1 results in a valid labelling.

ñ Edges (w,u) incoming to u still fulfill their constraint

`(w) ≤ `(u)+ 1.

ñ An outgoing edge (u,w) had `(u) < `(w)+ 1 before since

it was not admissable. Now: `(u) ≤ `(w)+ 1.

13.1 Generic Push Relabel

© Harald Räcke 454

Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a

height/label of n and the target a height/label of 0. If we see an

active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we

do not have an admissible arc but excess flow into u it should

roughly mean that the level/height/label of u should rise. (If we

consider the flow to be water than this would be natural).

Note that the above intuition is very incorrect as the labels are

integral, i.e., they cannot really be seen as the height of a node.

13.1 Generic Push Relabel

© Harald Räcke 455

Reminder

ñ In a preflow nodes may not fulfill conservation constraints;

a node may have more incoming flow than outgoing flow.

ñ Such a node is called active.

ñ A labelling is valid if for every edge (u,v) in the residual

graph `(u) ≤ `(v)+ 1.

ñ An arc (u,v) in residual graph is admissable if

`(u) = `(v)+ 1.

ñ A saturating push along e pushes an amount of c(e) flow

along the edge, thereby saturating the edge (and making it

dissappear from the residual graph).

ñ A non-saturating push along e = (u,v) pushes a flow of

f(u), where f(u) is the excess flow of u. This makes u
inactive.

13.1 Generic Push Relabel

© Harald Räcke 456

Push Relabel Algorithms

Algorithm 3 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f , c)
5: else

6: relabel(u)
7: return f

In the following example we always stick to the same active node

u until it becomes inactive but this is not required.

13.1 Generic Push Relabel

© Harald Räcke 457

Preflow Push Algorithm

Animation for push relabel

algorithms is only available in the

lecture version of the slides.

13.1 Generic Push Relabel

© Harald Räcke 458

Analysis
Note that the lemma is almost trivial. A node v having excess
flow means that the current preflow ships something to v. The
residual graph allows to undo flow. Therefore, there must ex-
ist a path that can undo the shipment and move it back to s.
However, a formal proof is required.

Lemma 30

An active node has a path to s in the residual graph.

Proof.

ñ Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s ∈ A.

ñ In the following we show that a node b ∈ B has excess flow

f(b) = 0 which gives the lemma.

ñ In the residual graph there are no edges into A, and, hence,

no edges leaving A/entering B can carry any flow.

ñ Let f(B) =∑v∈B f(v) be the excess flow of all nodes in B.

13.1 Generic Push Relabel

© Harald Räcke 459

Let f : E → R+0 be a preflow. We introduce the notation

f(x,y) =
{

0 (x,y) ∉ E
f((x,y)) (x,y) ∈ E

We have

f(B) =
∑
b∈B
f(b)

=
∑
b∈B

(∑
v∈V

f(v, b)−
∑
v∈V

f(b,v)
)

=
∑
b∈B

(∑
v∈A

f(v, b)+
∑
v∈B

f(v, b)−
∑
v∈A

f(b,v)−
∑
v∈B

f(b,v)
)

=
∑
b∈B

∑
v∈A

f(v, b)−
∑
b∈B

∑
v∈A

f(b,v)+
∑
b∈B

∑
v∈B

f(v, b)−
∑
b∈B

∑
v∈B

f(b,v)

≤ 0

Hence, the excess flow f(b) must be 0 for every node b ∈ B.

13.1 Generic Push Relabel

© Harald Räcke 460

Analysis

Lemma 31

The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label

of the source is n.

Lemma 32

There are only O(n2) relabel operations.

13.1 Generic Push Relabel

© Harald Räcke 461

Analysis

Lemma 33

The number of saturating pushes performed is at most O(mn).

Proof.

ñ Suppose that we just made a saturating push along (u,v).
ñ Hence, the edge (u,v) is deleted from the residual graph.

ñ For the edge to appear again, a push from v to u is

required.

ñ Currently, `(u) = `(v)+ 1, as we only make pushes along

admissable edges.

ñ For a push from v to u the edge (v,u) must become

admissable. The label of v must increase by at least 2.

ñ Since the label of v is at most 2n− 1, there are at most n
pushes along (u,v).

Lemma 34

The number of non-saturating pushes performed is at most

O(n2m).

Proof.

ñ Define a potential function Φ(f) =∑active nodesv `(v)
ñ A saturating push increases Φ by ≤ 2n (when the target

node becomes active it may contribute at most 2n to the

sum).

ñ A relabel increases Φ by at most 1.

ñ A non-saturating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

ñ Hence,

#non-saturating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .

Analysis

Theorem 35

There is an implementation of the generic push relabel

algorithm with running time O(n2m).

13.1 Generic Push Relabel

© Harald Räcke 464

Analysis

Proof:

For every node maintain a list of admissable edges starting at

that node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

ñ check whether edge (v,u) needs to be added to Gf
ñ check whether (u,v) needs to be deleted (saturating push)

ñ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)
ñ check for all outgoing edges if they become admissable

ñ check for all incoming edges if they become non-admissable

13.1 Generic Push Relabel

© Harald Räcke 465

Analysis
For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in

the residual graph Gf). Then we use the discharge-operation:

Algorithm 4 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissable then push(u,v)
8: else u.current-neighbour ← v.next-in-list

Note that u.current-neighbour is a global variable. It is only

changed within the discharge routine, but keeps its value

between consecutive calls to discharge.

Lemma 36

If v = null in Line 3, then there is no

outgoing admissable edge from u.

Proof.

ñ While pushing from u the current-neighbour pointer is only

advanced if the current edge is not admissable.

ñ The only thing that could make the edge admissable again

would be a relabel at u.

ñ If we reach the end of the list (v = null) all edges are not

admissable.

This shows that discharge(u) is correct, and that we can

perform a relabel in Line 4.

In order for e to become admissable the
other end-point say v has to push flow
to u (so that the edge (u,v) re-appears
in the residual graph). For this the label
of v needs to be larger than the label of
u. Then in order to make (u,v) admiss-
able the label of u has to increase.

13.1 Generic Push Relabel

© Harald Räcke 467

13.2 Relabel to Front

Algorithm 21 relabel-to-front(G, s, t)
1: initialize preflow

2: initialize node list L containing V \ {s, t} in any order

3: foreach u ∈ V \ {s, t} do

4: u.current-neighbour ← u.neighbour-list-head

5: u← L.head

6: while u ≠ null do

7: old-height ← `(u)
8: discharge(u)
9: if `(u) > old-height then // relabel happened

10: move u to the front of L
11: u← u.next

13.2 Relabel to Front

© Harald Räcke 468

13.2 Relabel to Front

Lemma 37 (Invariant)

In Line 6 of the relabel-to-front algorithm the following invariant

holds.

1. The sequence L is topologically sorted w.r.t. the set of

admissable edges; this means for an admissable edge (x,y)
the node x appears before y in sequence L.

2. No node before u in the list L is active.

13.2 Relabel to Front

© Harald Räcke 469

Proof:

ñ Initialization:

1. In the beginning s has label n ≥ 2, and all other nodes have
label 0. Hence, no edge is admissable, which means that
any ordering L is permitted.

2. We start with u being the head of the list; hence no node
before u can be active

ñ Maintenance:
1. ñ Pushes do no create any new admissable edges. Therefore, if

discharge() does not relabel u, L is still topologically sorted.
ñ After relabeling, u cannot have admissable incoming edges

as such an edge (x,u) would have had a difference
`(x)− `(u) ≥ 2 before the re-labeling (such edges do not
exist in the residual graph).
Hence, moving u to the front does not violate the sorting
property for any edge; however it fixes this property for all
admissable edges leaving u that were generated by the
relabeling.

13.2 Relabel to Front

Proof:

ñ Maintenance:

2. If we do a relabel there is nothing to prove because the only
node before u′ (u in the next iteration) will be the current
u; the discharge(u) operation only terminates when u is
not active anymore.

For the case that we do not relabel, observe that the only
way a predecessor could be active is that we push flow to it
via an admissable arc. However, all admissable arc point to
successors of u.

Note that the invariant means that for u = null we have a

preflow with a valid labelling that does not have active nodes.

This means we have a maximum flow.

13.2 Relabel to Front

© Harald Räcke 471

13.2 Relabel to Front

Lemma 38

There are at most O(n3) calls to discharge(u).

Every discharge operation without a relabel advances u (the

current node within list L). Hence, if we have n discharge

operations without a relabel we have u = null and the algorithm

terminates.

Therefore, the number of calls to discharge is at most

n(#relabels + 1) = O(n3).

13.2 Relabel to Front

© Harald Räcke 472

13.2 Relabel to Front

Lemma 39

The cost for all relabel-operations is only O(n2).

A relabel-operation at a node is constant time (increasing the

label and resetting u.current-neighbour). In total we have O(n2)
relabel-operations.

13.2 Relabel to Front

© Harald Räcke 473

13.2 Relabel to Front

Note that by definition a saturing push operation

(min{cf (e), f (u)} = cf (e)) can at the same time be a

non-saturating push operation (min{cf (e), f (u)} = f(u)).
Lemma 40

The cost for all saturating push-operations that are not also

non-saturating push-operations is only O(mn).

Note that such a push-operation leaves the node u active but

makes the edge e disappear from the residual graph. Therefore

the push-operation is immediately followed by an increase of the

pointer u.current-neighbour.

This pointer can traverse the neighbour-list at most O(n) times

(upper bound on number of relabels) and the neighbour-list has

only degree(u)+ 1 many entries (+1 for null-entry).

13.2 Relabel to Front

© Harald Räcke 474

13.2 Relabel to Front

Lemma 41

The cost for all non-saturating push-operations is only O(n3).

A non-saturating push-operation takes constant time and ends

the current call to discharge(). Hence, there are only O(n3) such

operations.

Theorem 42

The push-relabel algorithm with the rule relabel-to-front takes

time O(n3).

13.2 Relabel to Front

© Harald Räcke 475

13.3 Highest Label

Algorithm 6 highest-label(G, s, t)
1: initialize preflow

2: foreach u ∈ V \ {s, t} do

3: u.current-neighbour ← u.neighbour-list-head

4: while ∃ active node u do

5: select active node u with highest label

6: discharge(u)

13.3 Highest Label

© Harald Räcke 476

13.3 Highest Label

Lemma 43

When using highest label the number of non-saturating pushes is

only O(n3).

A push from a node on level ` can only “activate” nodes on levels

strictly less than `.

This means, after a non-saturating push from u a relabel is

required to make u active again.

Hence, after n non-saturating pushes without an intermediate

relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most

n(#relabels + 1) = O(n3).

13.3 Highest Label

Since a discharge-operation is terminated by a non-saturating

push this gives an upper bound of O(n3) on the number of

discharge-operations.

The cost for relabels and saturating pushes can be estimated in

exactly the same way as in the case of the generic push-relabel

algorithm.

Question:

How do we find the next node for a discharge operation?

13.3 Highest Label

© Harald Räcke 478

13.3 Highest Label

Maintain lists Li, i ∈ {0, . . . ,2n}, where list Li contains active

nodes with label i (maintaining these lists induces only constant

additional cost for every push-operation and for every

relabel-operation).

After a discharge operation terminated for a node u with label k,

traverse the lists Lk, Lk−1, . . . , L0, (in that order) until you find a

non-empty list.

Unless the last (non-saturating) push was to s or t the list k− 1

must be non-empty (i.e., the search takes constant time).

13.3 Highest Label

© Harald Räcke 479

13.3 Highest Label

Hence, the total time required for searching for active nodes is

at most

O(n3)+n(#non-saturating-pushes-to-s-or-t)

Lemma 44

The number of non-saturating pushes to s or t is at most O(n2).

With this lemma we get

Theorem 45

The push-relabel algorithm with the rule highest-label takes time

O(n3).

13.3 Highest Label

© Harald Räcke 480

13.3 Highest Label

Proof of the Lemma.

ñ We only show that the number of pushes to the source is at

most O(n2). A similar argument holds for the target.

ñ After a node v (which must have `(v) = n+ 1) made a

non-saturating push to the source there needs to be another

node whose label is increased from ≤ n+ 1 to n+ 2 before

v can become active again.

ñ This happens for every push that v makes to the source.

Since, every node can pass the threshold n+ 2 at most

once, v can make at most n pushes to the source.

ñ As this holds for every node the total number of pushes to

the source is at most O(n2).

13.3 Highest Label

© Harald Räcke 481

Mincost Flow

Problem Definition:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

ñ G = (V , E) is a directed graph.

ñ u : E → R+0 ∪ {∞} is the capacity function.

ñ c : E → R is the cost function

(note that c(e) may be negative).

ñ b : V → R,
∑
v∈V b(v) = 0 is a demand function.

14 Mincost Flow

© Harald Räcke 482

Solve Maxflow Using Mincost Flow

s

2

3

4

5

6

7

t

10

5

15

4

9

15

4

8

30

6

15

15

10

10

10

ñ Given a flow network for a standard maxflow problem.
ñ Set b(v) = 0 for every node. Keep the capacity function u

for all edges. Set the cost c(e) for every edge to 0.
ñ Add an edge from t to s with infinite capacity and cost −1.
ñ Then, val(f∗) = − cost(fmin), where f∗ is a maxflow, and

fmin is a mincost-flow.

14 Mincost Flow

© Harald Räcke 483

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

ñ Given a flow network for a standard maxflow problem, and

a value k.

ñ Set b(v) = 0 for every node apart from s or t. Set b(s) = −k
and b(t) = k.

ñ Set edge-costs to zero, and keep the capacities.

ñ There exists a maxflow of value at least k if and only if the

mincost-flow problem is feasible.

14 Mincost Flow

© Harald Räcke 484

Generalization

Our model:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : 0 ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

where b : V → R,
∑
v b(v) = 0; u : E → R+0 ∪ {∞}; c : E → R;

A more general model?

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ` : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

14 Mincost Flow

© Harald Räcke 485

Generalization

Differences

ñ Flow along an edge e may have non-zero lower bound `(e).
ñ Flow along e may have negative upper bound u(e).
ñ The demand at a node v may have lower bound a(v) and

upper bound b(v) instead of just lower bound = upper

bound = b(v).

14 Mincost Flow

© Harald Räcke 486

Reduction I

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

We can assume that a(v) = b(v):
Add new node r .

Add edge (r , v) for all v ∈ V .

Set `(e) = c(e) = 0 for these
edges.

Set u(e) = b(v)− a(v) for
edge (r , v).

Set a(v) = b(v) for all v ∈ V .

Set b(r) = −∑v∈V b(v).
−∑v b(v) is negative; hence r is only sending flow.

v

r

u(e
)=
b(v

)− a
(v)

`(e
) = 0

c(e
) = 0

Reduction II

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that either `(e) ≠ −∞ or u(e) ≠ ∞:

u v

u(e)= ∞
`(e) = −∞
c(e) = 0

If c(e) = 0 we can contract the edge/identify nodes u and v.

If c(e) ≠ 0 we can transform the graph so that c(e) = 0.

14 Mincost Flow

© Harald Räcke 488

Reduction II

We can transform any network so that a particular edge has

cost c(e) = 0:

x

b(x) = b(u)
u v

+
δ−
δ

+δ
δ

−δ
−δ +δ

u(e)= ∞
`(e) = −∞
c(e) = δ ≠ 0

−δ

Additionally we set b(u) = 0.

14 Mincost Flow

© Harald Räcke 489

Reduction III

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that `(e) ≠ −∞:

u v

u v

u(e)=d ≠∞
`(e)=−∞
c(e)=a

u(e)=∞
`(e)=−d
c(e)=−a

Replace the edge by an edge in opposite direction.

14 Mincost Flow

© Harald Räcke 490

Reduction IV

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : f(v) = b(v)

We can assume that `(e) = 0:

u v

u v

u(e)
`(e)=d ≠ −∞
c(e)

u(e)− d
`(e) = 0
c(e)

ū v̄
b(ū) = d b(v̄) = −d

The added edges have infinite capacity and cost c(e)/2.

14 Mincost Flow

© Harald Räcke 491

Applications

Caterer Problem

ñ She needs to supply ri napkins on N successive days.

ñ She can buy new napkins at p cents each.

ñ She can launder them at a fast laundry that takes m days

and cost f cents a napkin.

ñ She can use a slow laundry that takes k > m days and costs

s cents each.

ñ At the end of each day she should determine how many to

send to each laundry and how many to buy in order to fulfill

demand.

ñ Minimize cost.

14 Mincost Flow

© Harald Räcke 492

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

day edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = ri;
cost: c(e) = 0

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

buy edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = p

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

forward edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = 0

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

slow edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = s

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

fast edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = f

reservoir

trash

10

10

10

10

9

9

9

9

8

8

8

8

7

7

7

7

6

6

6

6

5

5

5

5

4

4

4

4

3

3

3

3

2

2

2

2

1

1

1

1

0

0

0

0

reservoir

trash

trash edges:
upper bound: u(ei) = ∞;
lower bound: `(ei) = 0;
cost: c(e) = 0

Residual Graph

The residual graph for a mincost flow is exactly defined as the

residual graph for standard flows, with the only exception that

one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v,u) has capacity

z and a cost of −c((u,v)).

14 Mincost Flow

© Harald Räcke 494

14 Mincost Flow

A circulation in a graph G = (V , E) is a function f : E → R+ that

has an excess flow f(v) = 0 for every node v ∈ V .

A circulation is feasible if it fulfills capacity constraints, i.e.,

f(e) ≤ u(e) for every edge of G.

14 Mincost Flow

© Harald Räcke 495

Lemma 46

A given flow is a mincost-flow if and only if the corresponding

residual graph Gf does not have a feasible circulation of

negative cost.

⇒ Suppose that g is a feasible circulation of negative cost in

the residual graph.

Then f + g is a feasible flow with cost

cost(f)+ cost(g) < cost(f). Hence, f is not minimum cost.

⇐ Let f be a non-mincost flow, and let f∗ be a min-cost flow.

We need to show that the residual graph has a feasible

circulation with negative cost.

Clearly f∗ − f is a circulation of negative cost. One can also

easily see that it is feasible for the residual graph. (after

sending −f in the residual graph (pushing all flow back) we

arrive at the original graph; for this f∗ is clearly feasible)

For previous slide:
g = f∗ − f is obtained by computing ∆(e) = f∗(e)− f(e) for every
edge e = (u,v). If the result is positive set g((u,v)) = ∆(e) and
g((v,u)) = 0. Otherwise set g((u,v)) = 0 and g((v,u)) = −∆(e).

14 Mincost Flow

© Harald Räcke 496

14 Mincost Flow

Lemma 47

A graph (without zero-capacity edges) has a feasible circulation

of negative cost if and only if it has a negative cycle w.r.t.

edge-weights c : E → R.

Proof.

ñ Suppose that we have a negative cost circulation.

ñ Find directed path only using edges that have non-zero flow.

ñ If this path has negative cost you are done.

ñ Otherwise send flow in opposite direction along the cycle

until the bottleneck edge(s) does not carry any flow.

ñ You still have a circulation with negative cost.

ñ Repeat.

14 Mincost Flow

© Harald Räcke 497

14 Mincost Flow

Algorithm 22 CycleCanceling(G = (V , E), c,u, b)
1: establish a feasible flow f in G
2: while Gf contains negative cycle do

3: use Bellman-Ford to find a negative circuit Z
4: δ←min{uf (e) | e ∈ Z}
5: augment δ units along Z and update Gf

14 Mincost Flow

© Harald Räcke 498

How do we find the initial feasible flow?

x1

x2

x3

x4

x5

x6

x7

ts −b(x1)−b(x1)
−b(x2)−b(x2)

−b(x3)
−b(x3)

b(x4)b(x4)

b(x5)b(x5)

b(x6)
b(x6)

b(x7)b(x7)

ñ Connect new node s to all nodes with negative b(v)-value.

ñ Connect nodes with positive b(v)-value to a new node t.
ñ There exist a feasible flow in the original graph iff in the

resulting graph there exists an s-t flow of value∑
v :b(v)<0

(−b(v)) =
∑

v :b(v)>0

b(v) .

14 Mincost Flow

1

2

3

4

(2
, 4
)

3

(1, 2)0

1(2, 2)
1

(1
, 5
)

(3, 3)3

0

-4 4

0

demand

cost

capacity

flow

14 Mincost Flow

© Harald Räcke 500

14 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 3)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 4
)

(-1
, 1
)

0

-4 4

0

14 Mincost Flow

© Harald Räcke 501

14 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 3)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 4
)

(-1
, 1
)

0

-4 4

0

14 Mincost Flow

© Harald Räcke 501

14 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 1)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 2
)

(-1
, 3
)

0

-4 4

0

14 Mincost Flow

© Harald Räcke 501

14 Mincost Flow

1

2

3

4

(2
, 1
)

(-2
, 3
) (-3, 1)

(3, 2)

(1, 2)(-1, 2)
(2, 1)(-2, 1)

(1
, 2
)

(-1
, 3
)

0

-4 4

0

14 Mincost Flow

© Harald Räcke 501

14 Mincost Flow

1

2

3

4

(2
, 2
)

(-2
, 2
) (-3, 1)

(3, 3)

(1, 2)(-1, 2)
(2, 1)(-2, 2)

(1
, 1
)

(-1
, 4
)

0

-4 4

0

14 Mincost Flow

© Harald Räcke 501

14 Mincost Flow

Lemma 48

The improving cycle algorithm runs in time O(nm2CU), for

integer capacities and costs, when for all edges e, |c(e)| ≤ C and

|u(e)| ≤ U .

ñ Running time of Bellman-Ford is O(mn).
ñ Pushing flow along the cycle can be done in time O(n).
ñ Each iteration decreases the total cost by at least 1.

ñ The true optimum cost must lie in the interval

[−mCU, . . . ,+mCU].

Note that this lemma is weak since it does not allow for edges

with infinite capacity.

14 Mincost Flow

© Harald Räcke 502

14 Mincost Flow

A general mincost flow problem is of the following form:

min
∑
e c(e)f (e)

s.t. ∀e ∈ E : `(e) ≤ f(e) ≤ u(e)
∀v ∈ V : a(v) ≤ f(v) ≤ b(v)

where a : V → R, b : V → R; ` : E → R∪ {−∞}, u : E → R∪ {∞}
c : E → R;

Lemma 49 (without proof)

A general mincost flow problem can be solved in polynomial

time.

14 Mincost Flow

© Harald Räcke 503

	Flows and Cuts
	Introduction
	Augmenting Path Algorithms
	The Generic Augmenting Path Algorithm
	Shortest Augmenting Paths
	Capacity Scaling

	Flow Applications
	Matching
	Baseball Elimination
	Project Selection

	Push Relabel Algorithms
	Generic Push Relabel
	Relabel to Front
	Highest Label

	Mincost Flow

