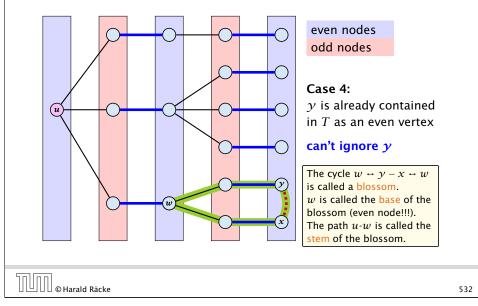
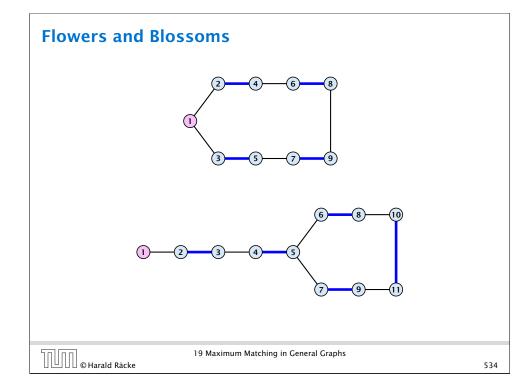
How to find an augmenting path?

Construct an alternating tree.





Flowers and Blossoms

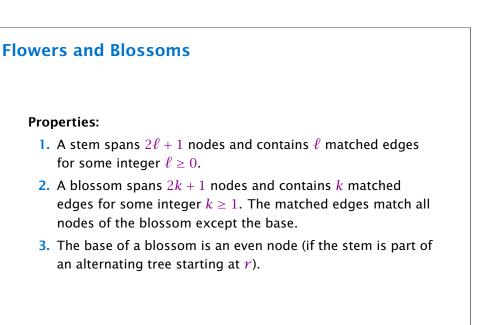
Definition 1

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Marald Räcke

19 Maximum Matching in General Graphs



533

Flowers and Blossoms

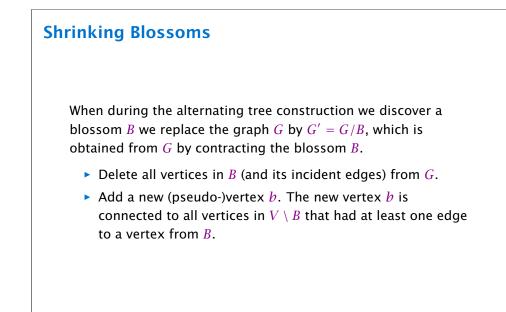
Properties:

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

© Harald Räcke

19 Maximum Matching in General Graphs

536



Flowers and Blossoms

Shrinking Blossoms Edges of *T* that connect a node *u* not in *B* to a node in *B* become tree edges in *T'* connecting *u* to *b*. Matching edges (there is at most one) that connect a node *u* not in *B* to a node in *B* become

Nodes that are connected in G to at least one node in B become connected to b in G'.

matching edges in M'.

الله المحمد ا

19 Maximum Matching in General Graphs

19 Maximum Matching in General Graphs

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

П	ſ	٦٢	٦l	© Harald	
Ľ	9	Ш	Ш	© Harald	Räcke

19 Maximum Matching in General Graphs

539

Correctness

Assume that in *G* we have a flower w.r.t. matching *M*. Let r be the root, *B* the blossom, and *w* the base. Let graph G' = G/B with pseudonode *b*. Let *M'* be the matching in the contracted graph.

Lemma 2

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.	
19 Maximum Matching in General Graphs Image: State Stat	

Correctness Proof. If P' does not contain b it is also an augmenting path in G. **Case 1: non-empty stem** • Next suppose that the stem is non-empty. $e^{P_1} e^{P_3} e$

19 Maximum Matching in General Graphs

Correctness

- ► After the expansion *ℓ* must be incident to some node in the blossom. Let this node be *k*.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

G Harald Räcke	19 Maximum Matching in General Graphs	543

Correctness

Lemma 3

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

 P_{3}

If the stem is empty then after expanding the blossom,

 19 Maximum Matching in General Graphs

 © Harald Räcke

 544

Correctness

Correctness

Proof.

Case 2: empty stem

w = r.

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that *r* and *q* are the only free nodes in *G*.

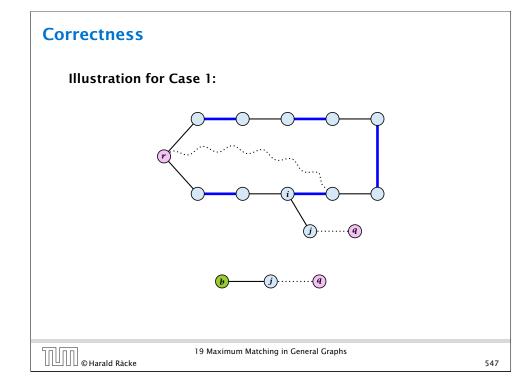
Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i,j) \circ P_2$, for some node j and (i,j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Barald Räcke



Algorithm 23 search(*r*, *found*)

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* \leftarrow false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize *list* \leftarrow {r}
- 5: while $list \neq \emptyset$ do
- 6: delete a node *i* from *list*
- 7: examine(i, found)
- 8: **if** *found* = true **then return**

Search for an augmenting path starting at r.

The lecture version of the slides has a step by step explanation.

Correctness

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching $M_{\rm +},$ since M and $M_{\rm +}$ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

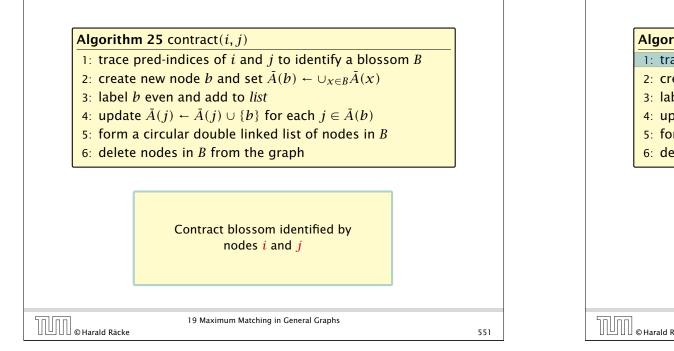
© Harald Räcke

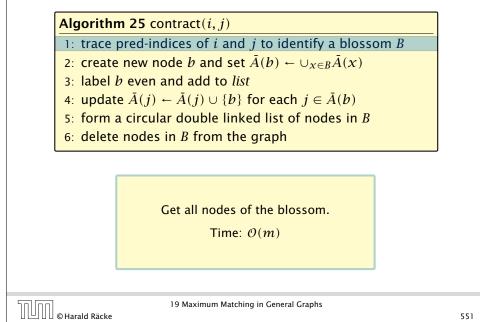
19 Maximum Matching in General Graphs

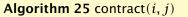
Algori	thm 24 examine(<i>i</i> , <i>found</i>)	
1: for	r all $j \in \overline{A}(i)$ do	
2:	if j is even then contract (i, j) and return	
3:	if <i>j</i> is unmatched then	
4:	$q \leftarrow j;$	
5:	$\operatorname{pred}(q) \leftarrow i;$	
6:	<i>found</i> ← true;	
7:	return	
8:	if <i>j</i> is matched and unlabeled then	
9:	$\operatorname{pred}(j) \leftarrow i;$	
10:	$pred(mate(j)) \leftarrow j;$	
11:	add mate(j) to list	

Examine the neighbours of a node *i*

548







- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

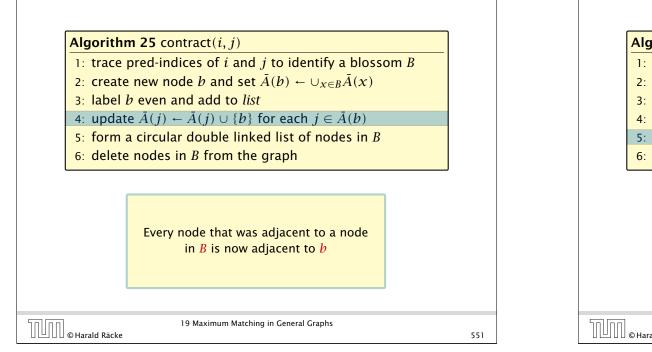
Identify all neighbours of \boldsymbol{b} .

Time: $\mathcal{O}(m)$ (how?)

	m 25 contract (i, j)
	pred-indices of i and j to identify a blossom B
	e new node b and set $\overline{A}(b) \leftarrow \bigcup_{x \in B} \overline{A}(x)$
3: label	b even and add to list
4: upda	te $\overline{A}(j) \leftarrow \overline{A}(j) \cup \{b\}$ for each $j \in \overline{A}(b)$
5: form	a circular double linked list of nodes in B
6: delet	e nodes in <i>B</i> from the graph
	<i>b</i> will be an even node, and it has unexamined neighbours.

19 Maximum Matching in General Graphs

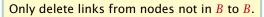
551



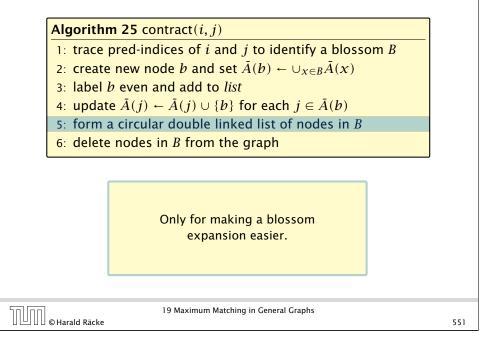
Algorithm 25 contract(i, j)

1: trace pred-indices of i and j to identify a blossom B

- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph



When expanding the blossom again we can recreate these links in time $\mathcal{O}(m)$.



Analysis

- A contraction operation can be performed in time O(m).
 Note, that any graph created will have at most m edges.
- The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time $\mathcal{O}(m)$.
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- An augmentation requires time $\mathcal{O}(n)$. There are at most n of them.
- In total the running time is at most

```
n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2).
```


19 Maximum Matching in General Graphs

